
UMTA-MA-06-Q048-81-8
DOT-TSC UMTA-81-44, l

System Operations Studies

for Automated Guideway
Transit Systems
Detailed Station Model

Programmer's Manual

John F. Duke
Roger Blanchard

S
DEPAR-rNS: JJ ov

TBAMSrOHTAT.ION

S.-P ? KtZ

-

GM Transportation Systems Divisic

General Motors Corporation

GM Technical Center

Warren Ml 48090

LIBRARY1

January 1982

Final Report

This document is available to the public

through the National Technical Information

Service, Springfield, Virginia 22161.

.
* *

U S. Department of Transportation

Urban Mass Transportation
Administration

Office of Technology Development and Deployment
Office of New Systems and Automation
Washington DC 20590

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

NOTICE

The United States Government does not endorse pro-
ducts or manufacturers. Trade or manufacturers*
names appear herein solely because they are con-
sidered essential to the object of this report.

Technical Report Documentation Page

3. Recipient's Cetelog No.

<r*S

43 7
Zo .Der^Kc-ovTA-

1. Report No.

UMTA-MA-06-0048-81 -8

2. Government Accession No.

^4. Title end Subtitle

SYSTEM OPERATIONS STUDIES FOR AUTOMATED GUIDEWAY
TRANSIT SYSTEMS - Detailed Station Model
Programmer's Manual

5. Report Dote

January 1982
6. Performing Orgonitotion Code

DTS-723

7 . Aut+,or',)j
ofin p. ^u(<ej gm JSD, ancj R 0g er Blanchard,

IBM Federal Systems Division

8. Performing Orgonizotion Report No.

DOT-TSC-UMTA-81 -44, I

9. Performing Organization Nome and Address

GM Transportation Systems Division*
General Motors Corporation
GM Technical Center
Warren, MI 48090

10. Work Unit No. (TRAIS)

UM268/R2670

12. Sponsoring Agency Nome ond Address

U.S. Department of Transportation
Urban Mass Transportation Administration
Office of Technology Development and Deployment
Office of New Systems and Automation
Washington DC 20590

DEPARTMENT OF
TRANSPORTATION

11. Contract or Grant No.

n0T-TSr.-l?20-4

$:-» 9

LIBRARY

si?

13. Type of Report end Period Covered

Final Report
June 1977 - January 1979

14. Sponsoring Agency Code

UTD-40

IS. Supplemented Notes

*Under contract to:

U.S. Department of Transportation
Research and Special Programs Administration
Transportation Systems Center
Cambridge, MA 02142

16. Abstroct

The Detailed Station Model (DSM) provides operational and performance measures
of alternative station configurations and management policies with respect to vehicle
and passenger capabilities. It provides an analytic tool to support tradeoff studies
between alternative operational strategies and station traffic flow patterns to
assist the initial station design selection by planners. This report describes
global variables, subprogram logic, and subprogram descriptions for the maintenance
and modification of this model.

17. Key Words 18. Distribution Stotement

"Scheduled Service, Queue Size, Queue
Time, Process Time, Demand- Responsive
Single Party, Demand-Responsive
Multiparty

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE N ATI ON A L TECHN 1 CA L

INFORMATION SE R V 1 CE ,
SPR 1 NG F 1 E LD.

VIRGINIA 22161

19. Security Clotsif. (ef this report) 20. Security Clettif. (of this page) 21* No. of Peges 22. Price

Unclassified Unclassified 361

Form DOT F 1700.7 (8-72) Reproduction of completed page authorised

PREFACE

In order to examine specific Automated Guideway Transit (AGT) develop-
ments and concepts--and to build a better knowledge base for future decision-
making--the Urban Mass Transportati on Administration (UMTA) undertook a

program of studies and technololgy investigations called the UMTA Automated
Guideway Transit Technology (AGTT) program. The objectives of one segment of
the AGTT program, the Systems Operation Studies (SOS), were to develop models
for the analysis of system operations, to evaluate performance and cost, and

to establish guidelines for the design and operation of AGT systems. A team
headed by GM Transportati on Systems Division (GMTSD) was awarded a

contract by the Transportation Systems Center to pursue these objectives.
The Technical Monitor for the project at TSC was Arthur Priver, who was
assisted by Li Shin Yuan and Thomas Dooley.

The Detailed Station Model (DSM) is a discrete event model representing
the inter-related queueing processes associated with vehicle and passenger
activities in an AGT station. The DSM will be used to analyze alternative
station configurations and management policies. This Programmer's Manual
describes global variables, subprogram logic, and subprogram descriptions
for the maintenance and modification of this model.

This document was prepared under the direction of the SOS Program
Manager at GMTSD, James F. Thompson. The first draft of this report was
prepared by the IBM Federal Systems Division (FSD) under the direction of

Roger Blanchard, and its final preparation was the responsibility of John
F. Duke of GMTSD.

METRIC

CONVERSION

FACTORS

1
!!«ll

5 1

i | ;

JlssS
i S 1

1

!

"fV* 3 *

I,!!
m m m m m • * «

llill ill! Ill

3 « « - • ***

1
i§

|
* is

S 151

f 6 E E 5 V« £ 3

I 8„ r
) N * —A

?!

Xltl

1 l 1

Jiiiii

: - 8 R n a
~ - ® a -

1

1

i I

HU if! Illili

.1

H

is
S 3

if

E EE

8-

- 8 .

0 -i. o o
«•

1 I

Cl XX IX ox SI SI XI 91 91 »l Cl XI It 01 s c L

1

9 S » c 5 1

mO

llll III! llll llll llll llll llll llll llll llll llll llll iin llll llll llll llll llll llll llll llll llll llll llll llll llll III! mi llll llll llll llll lllllllll llll llll llll llll llll llll llll llll llll llll llll llll

ITI|T TjT *|TT| l'|T |T T|T TIT

I miMl

u u E 1 "^'e'^ 5 2 EEE EE

| | ; I

III!
<J u E -c

fill
! ! (!
3 3 3 3 s
12222

•
• I. 9 S 2
3

$
iff
8» m 2 111 !

S £

I I
if

!
a*

s

i

«• • ^

jm.

« 8 • • • 9
« o o n e

^ tfci

• s

u
•M
•

Z, 5 * . 3 * «-

~ 3 ° ^ £
MOO *
** 9 ««^oddndo *

tc< M
•9<
s

m

If

©
>

sm —

<
SB
IM
A.

s
_ Mi

2 5 •S3 ~ o

if

-fi 2 S

fill liiii iii
1

hiiiiili |l

i £ * E iWi 3 S U S 5

IV

CONTENTS

Secti on Page

1. INTRODUCTION 1-1

2. PROGRAM DESCRIPTION 2-1

2.1 Input Processor 2-1

2.1.1 Architecture 2-10

2.2 Model Processor 2-13

2.2.1 Architecture 2-16

2.3 Output Processor 2-31

2.3.1 Architecture 2-31

. 3. GLOBAL VARIABLE DICTIONARY 3-1

4. DEBUG TOOLS 4-1

5. SUBPROGRAM LOGIC TABLES 5-1

6. DSM SUBPROGRAM DESCRIPTIONS 6-1

6.1 Input Processor 6-2

6.1.1 DAYTIM 6-2

6.1.2 ERROR 6-2
6.1.3 GDIPSECT 6-2

6.1.4 SACOMN 6-2

6.1.5 SAFLAG 6-2

6.1.6 SIADDR 6-3

6.1.7 SIBWRT 6-4

6.1.8 SICHCK 6-5
6.1.9 SICUMP 6-7

6.1.10 SIGIAT 6-8
6.1.11 SIINIT 6-12
6.1.12 SIMNAM 6-13
6.1.13 SINERR 6-14
6.1.14 SINPUT 6-15
6.1.15 SIPARM 6-17

6.1.16 SIPSAV 6-19

6.1.17 SIREPT 6-21

6.1.18 SISCFG 6-25

6.1.19 SITDGN 6-30
6.1.20 SIVDGN 6-33
6.1.21 SMRNG 6-35
6.1.22 SMRSEL 6-35

6. 1.2*3 TIMES 6-35

v

Sec ti on Page

Model Processor 6-36

6.2.1 DAYTIM 6-37
6.2.2 DBUG 6-38
6.2.3 DQUE 6-40
6.2.4 DQUEM 6-41

6.2.5 DQUEMID 6-42
6.2.6 DTIMEL 6-43
6.2.7 ENDQLOOP 6-44
6.2.8 FREE 6-45
6.2.9 GET 6-46
6.2.10 MULTICK 6-47
6.2.11 NQUE 6-48
6.2.12 QLOOP 6-49
6.2.13 SAASYN 6-51

6.2.14 SACKR 6-53
6.2.15 SACOMN 6-55
6.2.16 SADADD 6-56
6.2.17 SAFA I

L

6-57
6.2.18 SAFINM 6-59
6.2.19 SAFINS 6-60
6.2.20 SAFLAG 6-66
6.2.21 SAINIT 6-67
6.2.22 SAMAIN 6-69
6.2.23 SANFEL 6-71

6.2.24 SANMDL 6-72
6.2.25 SANSAV 6-73
6.2.26 SANTIX 6-74
6.2.27 SANTSA 6-75
6.2.28 SANXTN 6-76
6.2.29 SAPFEL 6-77
6.2.30 SARFEL 6-79
6.2.31 SASAMP 6-81

6.2.32 SASCTL 6-83
6.2.33 SASPRM 6-85
6.2.34 SATORG 6-87
6.2.35 SATRD 6-88
6.2.36 SAUCTL 6-89
6.2.37 SAUPRM 6-90

6.2.38 SAVORG 6-91

6.2.39 SAVRD 6-93

6.2.40 SAWTIX 6-94
6.2.41 SAZNIT 6-95
6.2.42 SCHED 6-96
6.2.43 SERROR 6-98
6.2.44 SMBRD 6-100
6.2.45 SMDBRD 6-102
6.2.46 SMDETR 6-103
6.2.47 SMDIVF 6-104
6.2.48 SMDIVO 6-110
6.2.49 SMDIVS 6-111

vi

Secti on Page

6.2.50 SMENTR 6-112
6.2.51 SMEVM 6-113
6.2.52 SMGDIP4 6-114
6.2.53 SMLTIM 6-119
6.2.54 SMNXST 6-121

6.2.55 SMRNG 6-122
6.2.56 SMRSEL 6-123
6.2.57 SMTABQ 6-124
6.2.58 5SASAV 6-127

6.2.59 SSLEAV 6-128

6.2.60 SSMOD 6-129
6.2.61 SSMODA 6-131

6.2.62 SSMODB 6-133
6.2.63 SSMODN 6-138
6.2.64 SSPMAC 6-140
6.2.65 SSTEST 6-142
6.2.66 SULEAV 6-144
6.2.67 SUMOD 6-145
6.2.68 SUPMAC 6-147
6.2.69 SUTEST 6-148
6.2.70 SZHDR 6-149
6.2.71 SZINT 6-150
6.2.72 SZSTAT 6-151

6.2.73 SZZERO 6-163
6.2.74 VRAND 6-164
6.2.75 VRANDN 6-165

Output Processor 6-166

6.3.1 CKFOLLOW 6-167
6.3.2 DAYTIM 6-168
6.3.3 DBUG 6-169
6.3.4 DTIMEL 6-170
6.3.5 SHIST 6-171

6.3.6 SLIST 6-173
6.3.7 SODATA 6-175
6.3.8 SONTIX 6-177
6.3.9 SOPSUM 6-178
6.3.10 SOUTPT 6-179
6.3.11 SOWTIX 6-181

6.3.12 SOZNIT 6-182
6.3.13 SREAD02 6-184
6.3.14 SREAD03 6-186
6.3.15 SREAD04 6-187
6.3.16 SREQTLU 6-188
6.3.17 SSETUP 6-189
6.3.18 SZPLOT 6-190
6.3.19 SZREAD 6-192
6.3.20 ZABIN 6-195
6.3.21 ZBINL 6-198
6.3.22 ZBNCHK 6-199

Secti on Page

6.3.23 ZDBIN 6-202
6.3.24 ZDUMBIN 6-203
6.3.25 ZERROR 6-204
6.3.26 ZFLAG 6-205
6.3.27 ZGRAPH 6-206
6.3.28 ZHEADER 6-208
6.3.29 ZHIST 6-209
6.3.30 ZLIST 6-210
6.3.31 ZMNMX 6-211

6.3.32 ZRCLEAN 6-212
6.3.33 ZREQU 6-213

6.3.34 ZSHIFT 6-215
6.3.35 ZSKIPFO 6-216
6.3.36 ZSTORE 6-217

APPENDIX A PROCESS DESIGN LANGUAGE A-l

APPENDIX B HIPO DIAGRAMS B-l

APPENDIX C REPORT OF NEW TECHNOLOGY C-l

ILLUSTRATIONS

Figure Page

2-1 Input Processor 2-2

2-2 Model Processor 2-5

2-3 Output Processor 2-8

2-4 Input Processor Control Hierarchy 2-11

2-5 Input Processor 2-12

2-6 Model Processor Control Hierarchy 2-14

2-7 Model Processor Architecture 2-17

2-8 Archi tecture/Model ing Control Relationship 2-18

2-9 DSM Entity Modeling Architecture 2-20

2-10 Station Link Model Processing Hierarchy 2-21

2-11 Trip Link Model Processing Hierarchy 2-22

2-12 Station Link Canonical Definition 2-22

2-13 Sample Configuration of Station Links 2-25

2-14 Trip Link Sequence 2-26

2-15 Clock Table Organization 2-28

2-16 Multiple Thread List Organization 2-30

2-17 Output Processor Architecture 2-33

2-18 Output Processor Bin Referencing 2-35

2-19 Request Filing/Bin Storage Relationship 2-38

2-20 Data Matching Process 2-39

2-21 Data Matching Results 2-40

6-1 Distribution of Number of Transactions versus Their 6-62
Delta Time

6-2 Contrasting Distributions from Two Models 6-64

6-3 Sample Diverge 6-105

IX

Figure Page

6-4a Diverge Function #1 6-107

6-4b Diverge Function #2 6-107

6-4c Diverge Function #3 6-108

6-4d Diverge Function #4 6-108

6-4e Diverge Function #5 6-108

6-4f Diverge Function #6 6-108

6-5 GDIP Common Data Definition

TABLES

6-116

Table Page

1-1 DSM Input Processor 1-2

1-2 DSM Model Processor 1-5

1-3 DSM Output Processor 1-8

3-1 Global Variables - SCAMSG 3-4

4-1 Input Processor Debug Flags 4-2

4-2 Model Processor Debug Flags 4-3

4-3 Output Processor Debug Flags 4-5

5-1 Input Processor - Subroutine Logic Table 5-2

5-2 Model Processor - Subroutine Logic Table 5-5

5-3 Output Processor - Subroutine Logic Table 5-10

6-1 Link Connectivity 6-29

6-2 SZSTAT Statistics Descriptions 6-153

X

SECTION 1. INTRODUCTION

This is the Programmer's Manual of the Detailed Station Model (DSM).

This model consists of three processors: Input Processor (IP), Model

Processor (MP), and Output Processor (OP). These three processors are

executed independently to prepare input data, perform the simulation,
and report the results, respectively.

The code itself consists of:

1. Routines that are compiled using PARAFOR or the assembler;

2. Included Members that are placed in line in routines when they
are compiled;

3. Macros that are expanded into code in line when the routine is

compiled (PL/I and ASM);

4. Common Area Data Definitions that are included in line when
the routine is compiled (just a subset of included members);
and

5. Entry Points within routines called when a particular subprocess
of the routine is to execute.

The names of the 'code segments' (i.e., routines, included members,
macros, and common area definitions) and entry points are listed for

the IP in Table 1-1, for the MP in Table 1-2 and for the OP in

Table 1-3.

Each table lists for each code segment and entry point, its name,
description, language, type, and sources of detailed information. There
are three main sources of detailed information on these code segments:

o PDL -- Program Design Language — given in Appendix A;

o Program Descriptions -- given in Section 6; and

o Preambles — included at the beginning of every major routine
and included member -- see source listings for members with
names of the form xxxO.

These tables serve as a guide to where detailed information can
be found on each code segment.

1-1

Table 1-1. DSM Input Processor (Page 1 of 3)

D5M - INS»UT PRQCEsso k CODE SEGMENTS S ENTRY POINTS

NAME LIB T
Y
P
E

T>
k.

D
L

c
•

D
•

p

1A
*
ii

M

DESCRIPTION

ATYPE ASM M YM YM YM STANDARDIZED ASM LA MG RTN LINKAGE
CALLS ASM M in 'YM YM STANDARDIZED ASM LANG RTN LINKAGE
COMM ASM M

4i YM YM YM G DIP COMMON AREA CSECT GENERATION MACRO
DAYT1M PORT R X X X GET CURRENT DATE AND TIME Y Y/MM /DD/HH/M M/SS
BdUG PLI a a X a WRITE INTERMEDIATE OUTPUT
DO PLI a YM YM YM STANDARDISED REGISTER SAVE MACRO
DTI MEL ASM H I X X SOURCE MEMBER FOR SUBROUTINE TIMES
ENDHFS ASM R YM YM YM GDIS COMMON AREA PROCESSOR MACRO
ENTER ASM M YM YIl YM STANDARD ASM LANG ENTRY MACRO
ERROR PORT S X X A ERROR MESSAGE WRITE (SOURCE =SIERROR

)

GDI PS ACT A SB R X X X RLAc GD IP DATA (SOUiCL=SIGDIP4)
GDIPP4 PORT R I Y X READ FULLWORD GDI? DATA (SOURCE -XGDIPF4)
GDIPH4 port R V

1 Y X READ HALFWORD G DIP DATA (SO URCS=XGDIPH4)
GDIPX4 PORT R Y Y X HEAD BYTE SIZE GDIP DATA (S OURCE-XG DIPX 4)
GDIP4 ASM V £ 2 y ENTRY POINT OF GDI? SECT
LaL ASH a y a YM YM STANDARD ASM LANG TEST FOR 0 MACRO
LEAVE ASM a* y a YM YM STANDARD ASM LANG EXIT MACRO
LODCO.I ASM E E E ii SYSCHAR ADDE+LGPH LOAD (ENTRY IN SIPSAV)
NDBOR A S3 R V

a. Y X READ GDIP F:iT SPEC’S BY U SE fi (SO URCE-XND BO R)
N 0D I M I i'S A SB M V MI n YM YM ESTA5. NO. DIMERS POR BLDG GDIP TABLE
SaCOU

n

PORT R >7A X r INPUT COMMON AREA ORDERING
SAPLAG ? GET Zj V

Si. X X INTERMEDIATE OUTPUT FLAG PROCESSING
S GA H S G PORT C V

/k c c MESSAGE DATA MAINTAINED BY IP
SCICFG PORT c X c c STATION CONFIGURATION INPUT
SCIPEL PORT c V c c FEL TIMING INPUT DATA
SCI M A X PORT c 77

A c c RUN TIME MAXIMA
SC1SL PORT c X c c STATION LINK INPUT DATA
S C I S Y S PORT c VA c c SYSTEM INPUT DATA
SCI EL PORT c X c c TRIP LINK INPUT DATA
SCNEAX POST c X c c RUNTIME LIMITS
S CN SYS PORT c A c c SIMULATION SYSTEM DATA
SCNTDM PORT c X c 7»c TRIP DEMAND DATA
S CSV d:i PORT V- X c c VEHICLE DEMAND DATA
SIADDr, ASM R A X A SYSTEM CHARAC ADDS AND LENGTH SAVE
S 1 3 f> R T PORT X X X STRUCTURED DATA FILE WRITE
S IC :1C K PORT R X X V

il DATA INITIALIZATION AND CHECKING
SICSCR 1 PORT I X I I STATION LINS - EVENT COMPATIBILITY CHECK
S ICD M P PORT Q

A. 4. X X A CUM PROS. DIST. CONVERSION
SIELROR PORT R X X X SOURCE MEMBER NAME OF SUB RTN ERROR
SIGGI24 A SM R v»A X X SOURCE MEMBER NAME OF SUBRTN GD1PSECT
SIGIAT PORT R VA X X VEH INTER ARRIVAL TIME GENERATIONsum r PORT R X X VA DATA INITIALIZATION
SlLl’j I TS FORT C c c c DATA CHECK LIMITS
S III NA i'i PORT R X X X PARSE PARE FIELD AND WRITE LOAD MODULE NAME
SINCOM NS FORT I I I I TRIP/VEH GENERATION COMMONS
SIN COM NT FORT I 1 I 1 TRIP GENERATION COMMONS INCLUDE
S 11 COS N V F OR T I I I I VEH GENERATION COMMONS INCLUDE
SINEKL, FORT R A X VA ERROR MESSAGE GENERATION
SINPU i FORT R

\r
YV X X INPUT PROCESSOR CONTROL

sinpu n PORT I X I I SYSTEM CHARACTERISTICS READ
SINrlTT

A

POET I X I A RUNTIME DATA INPUT PROCESSING
SIN PUT

3

PORT I VA I I TRIP DEMAND DATA INPUT
SINPUT4 FORT I X I I VEHICLE DEMAND DATA INPUT
S INPUT 4

A

PORT I X I TX NEXT STOP SELECTION DATA INPUT
SIN PUT 4 h POR T I X I I 1 NTERARRIVAL TIME DATA INPUT
SINPUT4C FORT I X I i TRIP SIZE DATA INPUT
SI PARS A SM R X X A PARAMETER LIST SAVE
SI2LST ASM E A*

4-4
V r>

L. ENTRY PoINT OF SIPARM
SI PSA V ASM R — X X IP AND SYS CHAR COMMONS A DDR AND LGTff SAVE
S 1 .YEP T P OR T R X X X INITIAL CONDITIONS REPORT
E 1REPT 1 0 FORT I I I 1 REPORT FORMATS

1-2

Table 1-1. DSM Input Processor (Page 2 of 3)

SIKEPT 2 FORT I I I I REPORT LOCAL DECLARES AND INCLUDES
SIEEPT3 FORT T

-L X
-r
X r TRIP AND VEH CHARACTERISTICS W R IT

E

SIREPT4 FORT X X I i SERVICE CHARACTERISTICS SUMMARY
SIREPT4A FORT I X I i VEH SPACING AND HEADWAY SUMMARY
SIREPT4 3 FORT T X I r

J. EMPTY POLICY SUMMARY
SIREPT4C FORT I I I 1 SIMULATION CONTROL DATA SUMMARY
SIREPT4D FORT I X I X ROUTE ASSIGNMENT SUMMARY
SIRSPT5 FORT I £ I T STATION LINK SUMMARY
SIREPT5A FORT I I I i STATION LINK DATA
SIREPT5E FORT I 7_ I

~r DNSTRM LINK AND DVRG FN VALIDATION
SIREPTSC FORT I i I 1 LINK CHARACTERISTICS CHECK
S 1REPT5D FORT I I TX r

JL MULTIPLE UPSTRM/DNS TPK LINKS + EVENTS
TRIP TRIP LINK SUMMARYSIRLPTo FORT I X I

T
X

SIS ADD FORT £ V E E SYS CHAR ADDR + LGTH SAVE(EP IN SIB WE
SISCFG FORT R X X X STATION CONFIGURATION
SISCFG 1 FORT I I I 1 LINK TYPE SCAN
SISCFG2 FORT 1 I I I ERROR CHECKING
S 1 S C Fo 3 FORT I I I I STRUCTURED TABLE BUILD
SISCFG

4

PORT T
_L 1 I i UPSTREAM POINTER TABLE BUILD

S IS CFG 4

A

FORT X X I
<
a. INPUT Q US LINKS BUILD

SI3CFo43 FORT I I I i DOCK OS LINKS BUILD
5ISCFC4C FORT T

_L X I i OUTPUT y US LINKS BUILD
SISCFo4& FORT I

T
JL. I l OUTPUT RAMP US LINKS BUILD

S1SCFG4E FORT I T'
JL. I i STORAGE US LINKS BUILD

SISCFG 4? FORT I T T i DOCK TO STORAGE US LINKS BUILD
S IS CFG 4

G

FORT I I I l DL US LINKS BUILD
SISCFG 4

a

FORT I I I T
-L MOA US LINKS BUILD

SISCFG

E

FORT I -L. I r DOW 1ST fi EA K LINKS PR OCRS SI N’G

Sii«^Fsj5A F OR T TX JL. X INPUT RAMP DS LINKS BUILD
S1SCF j5B FORT 1 1 T T

-k. INPUT Q DS LINKS r-UILD
SISCFG SC FORT I ~r i A DOCK DS LINKS BUILD
SISCFG 5D FORT I X

~rX i OUTPUT ODS LINKS BUILD
^ j. S ^ j oSE FORT I 7 I I STORAGE 'TO INPUT DS LINKS 3UILD
SISCFG 5F FORT I I I l UL DS LINKS BUILD
SISCFGSG FORT ~r

jL I X a IB DS LINKS BUILD
S 0.5 .v R £' FORT n

X» is
7?

SL ENTRY POINT OF SIBNET
SITEG .% F OR T R VA X TRIP GENERATION
SlTDGii 1 FORT ~r x I I LOCAL DATA DEFNS
SITDGH2 FORT I X I I INPUT VERIFICATION
SXTDG N 3 FORT -fX -X I T_ ERROR MESSAGE GENERATION
SXTDG n 4 FORT I A T TT

X TRIP GENERATION SUMMARY
SIVDG 3 FORT I

»

x V
Ik X VEHICLE GENERATION

SIVDGN

1

POST X • I -i. LOCAL DATA DEFNS
SI VDGn 2 FORT T A I I I N PUT VEE IF IC AT ION
S I VDG 1 2 A F Or T I I 1 I PiiOB. DIST. CONVERSION TO CUM. PROB .

SI V DG N 2S FORT T N
PL

~r
J. ERROR MESSAGE GENERATION

SIVDG 34 PORT 7
Jk.

f
iV I T SCHEDULED VEHICLE GENERATION

S IV DG I* 5 FORT I X I 7 DEMAND RESPONSIVE VEHICLE GENERATION
SIVDG Nb FORT I X I T ONBOARD TRIP GENERATION
S IV DG N 7 F OR T I A I I VEHICLE GENERATION SUMMARY
S o a rt A . i FORT >?

ill
U E E LIST USED MEMBERS IS INDEX

SHAHS IDE PLI I
/
* I 1 COMPILE TIME SIDES

SMRNG FORT Tt X X •r

. k RANDOM NUMBER GENERATOR
S MRS EL FORT L X X X CUM. PR03 . LIST. SAMPLING

W III TE

Sri EL
TllltS
TAAC3K
TRCBK

P

TffltKI
TRCBK

V

TBCrKR
UNDO
XGD1PF4
XGDI?.i4
XGDx? X

4

XNBoOn
XTRal LK
XTRCLKP

A Sfl

Asa
a sa
FORT
FORT
FORT
FORT
A SM
PORT
fort
FORT
FORT
ASA
FORT

&
R
H
R
v

IP
i-i

a
s
R
R
r

,

i\

R

A
Y
Y

i-j

iA
1
i
Y
Y
Y
Y

X
Y
Y
E
E
v
Y A
Y
Y
Y
Y
Y
Y

I
G

c.

r
1-

id
v

X
X
X

JilT. FOR PRO OR ad INTERRUPT (ENTRY IN TRACBK)
LT CURR SYS TATE + TINE (SOURCE =DTI MEL)

n r r v - y v r x r p vr ^PERFORM TKACE3ACK (SOURCE—X TRAC BK)
PRINT CALLING RTN 1 NFO (SO (JR CE=X TRCB K?)
PRINT HEADING LINK (ENTRY IN TRCBK?)
PRINT 2 LINES FOR ARGUMENT (ENTRY IN TRCbKP)
PRINT 3 LIMES FOR GEN. PEG. (ENTFY IN TRC3X?)
STANDARD AEoI ST t.R RESTORE MACRO
Source member name of subrtn gdi??4
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE

MEMBER
MEMBER
MEMBER
MEMBER
ME ii.HE R

NAME
NAME
NAME
NAME
name

uF SUBRTN GD1PH4
OF SUBRTN GDIPX4
OF SUBROUTINE NO BOR
OF SUBROUTINE TRACLK
OF SUBROUTINE TRCB KP

? DESCRIPTION
1-3

N AM E LIE T ?

Table 1-1. DSM Input Processor (Page 3 of 3)

Y D . K
P L D E
E „ A

NOTATION S:

* = DOES NOT INCLUDE PREAMBLE CODE SEGMENTS (XXXXXXO)

TYPE:
P = ROUTINE
1 = INCLUDED IlEJIB EE
M = MACRO (,

'Ll OR ASM)
C = COMMON AREA DEFINITION (3 HIGH IS INCLUDED)
E = ENTRY POINT (IN ROUTINE WHOSE NAME IS GIVEN

PDL

:

X - PDL GIVEN
I = PDL NOT GIVEN, SINCE IT INCLUDED MEMBER AND

OF WHAT IT IS INCLUDED IN
E = PDL NOT GIVEN, SINCE IT IS AN ENTRY POINT
A = PDL NO? GIVEN, SINCE IT IS a MACRO
Y = PDL NOT GIVEN, SINCE IT IS EXISTING CODS AND

UNDER GENERAL PURPOSE ROUTINES

IN DESCRIPTION)

TREATED IN THE

DISCUS SED

PD

COMPONENT .iji
X =

=

L
’.a

LI

I

COMPONENT DESCRIPTION GIVEN
COMPONENT DESCRIPTION NOT GIVEN, SINCE IT INCLUDED

AND TREATED IN THE COMPONENT DESCRIPTION OF WHAT
INCLUDED I

NOT GIVEN

MEMBER
IT IS

COMPONENT
DEFINIT

COMPONENT
COMPONENT
COMPONENT

DESt :siption ;l ACE IT IS A COMMON

DESCRIPTION
DESCRIPTION
DESCRIPTION

NOT
NOT
N uT

GIVEN

,

GIVEN

,

GIVEN ,

SINCE
SINCE
SI NCS

IT
IT
IT

IS
IS
IS

AN ENTRY
k MACRO
EXISTING

AND Is DISCUSSED UNDER GENERAL PUEPO: RO UTINES

AREA

POINT

CODS

PREAMBLE:
X = PREAMBLE GIVEN
I = PREAMBLE NOT GIV]

AND TREATED IN
INCLUDED IN

[A?

th;
SINCE IT INCLUDED
PREAMBLE OF WHA

C =

Y -

PREAMBLE NOT
DEFINITION

GIVEN, SINCE IT IS A COMMON

PREAMBLE
PREAMBLE
PREAMBLE
AND IS

NOT
NOT
NOT

GIVEN

,

GIVEN,
GIVEN,

SINCE
SI

AN ENTRY
A MACRO
EXISTING

DISCUSSED UNDER GENERAL PURPOSE
7 MNCE

IT
IT
IT

IS
IS
IS

IS

AREA

POINT

CODE
BOUTIN IS

1-4

Table 1-2. DSM Model Processor (Page 1 of 3)

3 Sri - MODEL PROCESSOR CODE SEGMENTS S ENTRY POINTS (*}

ifAHE LIB
l

i

1
E-»

t>

4
fX,

Pr-J

1

i

1

1

1

1

ricvi

i

I

i

c
•

D
•

p
Xk

K

A
» 1

DESCRIPTION

ATYPE ASM YM YM YS SID MACRO GENERATION LIMIT MACRO
CALLS ASF a YS YM YH STD ASSEMBLY LANG ROUTINE LINXA GEMACRO
CGMN Asa H t a Y‘i YM GDI? COMMON AREA CSSCT GENERATION MACRO
DA YTIM FORT R

- T
X. X X CONVERT DATE & TIME TO IY/MM/DD/HH/MM/SS

D LUG PLI W
11 M X Rf

. i WRITE INTERMEDIATE OUTPUT
DO ASK M YM YM YM STANDARDISED REGISTER SAVE MACRO
DgUL PLI M a X M DEQUEUE XTN FIFO
BQUEM PLI M

El .a X a DEQUEUE XTN FROM ANYWHERE IN CHAIN
DQUeMID PLI a a X >j»

li DEQUEUE XTN FROM ANYWHERE IN CHAIN (W.QLOOP)
DIIMLL ASS R X X X GET DATE & TIME FROM SYSTEM
END hFS ASF M f M V YM GRIP COMMON AREA PROCESSOR MACRO
ENTER ASM a YM YM YM STANDARD assembly language ENTRY MACRO
E RDQLOGP PLI a s

i.I X >-X
*1 END QLOOP CODE SEGMENT

FREE PLI a X w RETURN XTN TO AVAILABLE CHAIN
GET PLI a :2

El X a GET XTN FROM AVAILABLE CHAIN
LBL A SM a YM YM YM STANDARD ASSEMBLY LANGUAGE TEST FOR 0 MACRO
LEAVE ASF a YM YM YS STANDARD ASSEMBLY LANGUAGE EXIT MACRO
LODCOM ASH TT

X-t

VI E 'C*u SYSCHAR ADDR+LGTH LOAD (Ei-SSASAV)
MULTICK PLI a a X a CHECK IF XTN iS ALREADY IN A CHAIN
NGDIMLBS ASF Nl

Li 1 M YH YM ES TAB -NO.DIMENS FOR BUILDING GDI? TABLE
N q O E PLI V, x X i’i ENQUEUE XTN FIFO
PSEUDO /iSli E TTf E

-r>

J-J XPSEUDO-MAIN ENTRY
QLOO? PLI a Sf

*.1 X « LOOP THROUGH CHAIN S D'O CODE SEGMENT ON EACH
SAASYN FORT R V

*Tk X A ASYNCHRONOUS DATA READ
C a p w o T» FORT E n E E W h I TE CHECK PO IN T RE CO

R

D (E P- SACK R)
S ACER FORT R y

X A CHECKPOINT S RESTART PROCESSING
SACOMN FORT R I X X DEFINE ORDER OF INPUT COMMONS FOR IP t> HP
SADADD FORT a \F

J\ X 1 INITIALIZE INPUT AREA ADDRESSES S MESSAGES
SAFAIL FORT a ?>•

A X A FAILURE ACTIVITY PROCESSING
SaFINK P OUT a Ik X

>/

Fk WRITE MODEL REPORT
SAFINS FORT R X X X PEL USAGE REPORT
SAFLAu FORT T'i

r\ X
cr
F^ INTERMEDIATE OUTPUT FLAG SETTING

SaINIT FORT R X X X I X I T1 A LIZ E S I M U LA TI ON
SAINIT 1 FORT I T

-L. I T SCHEDULE INITIAL SYSTEM SERVICE TRANSACTIONS
S AMAIN FORT O

x: X X MAIN CONTROL LOOP
SANDTA FORT E i> E T5 READ INPUT DATA INTO INPUT COMMONS (EP-SAD ADD)
SAN PEL F OR T R X X X INITIALIZE FUTURE EVENT LIST
SANHDL FORT R X X Y

*k MODEL VARIABLE INITIALIZATION
SAN SA

V

A S:1 R A X Ik INIT CKPT & SYSTEM DATA READ PROCESSES
SANTIX. ASF R X X A INITIALIZE MEMBER NAME STRING FOR INDEX FILE
SANTS

A

FORT R X X X INITIALIZE SYSTEM STATUS AREA ADDRESSES
SANXT'S FORT R V

p* X X INITIALIZE XTN HEADER DATA & AVAILABLE LISTS
SAPFLL FORT P X X X PUT TRANSACTION UN FUTURE EVENT LIST
S APPEL 1 FORT I X I I FIND TIME ORDER POSITION WITHIN CHAIN
SAPFEL2 FORT T X I I WRITE TRIP/VEHICLE FILE AND UPDATE STATS
SAPFEL3 PORT i V

Fk I I UPDATE VTIME FOR FOLLOWING - VEHICLES IN TRAIN
SARFEL FORT i X X X REMOVE MOST IHBENENT XTN FROM FEL
SaRFKLI FORT i I I 1 RELOAD CLOCK TABLE FROM MULTIPLE THREAD CHAIN
SAFEST FORT E E E TP

xj READ CHECKPOINT ‘-RECORDS S RESET FILES (EP-SACKR
SASAMP FORT R X X X SAMPLE EVENT PROCESSING
SASCTL FORT 1 X V

Ik- X CONTROL FOR VEHICLE EVENT PROCESSING
SASCTL1 FORT I V

Fk I T
-k. FREE VEHICLES & TRIPS TO ^AVAILABILITY LISTS

SA3DR

M

FORT I X X X STATION LINK PROMPT EVENT PROCESSING
SATORG FORT R V

Ik. X X MOVE ARRIVING T LIP
SAT HD FORT R X X X R’fcAD TRIP FROM TRIP FILE
SAUCTL FORT I X X X CONTROL FOR TRIP EVENT PROCESSING
S AUPR M FORT I X X X TRIP LINK PROMPT EVENT PROCESSING
S AUPTX A SB E L E E PASS MEMBER NAME STRING TO SAWTIX (EP-SA NTIX)

SAVORG FORT R A X X MOVE ARRIVING VEHICLE
SAVRD FORT R X X X READ VEHICLE FROM VEHICLE FILE
SANTIX FORT R X X X PARSE P ASM LIST & WRITE LOAD MODULE NAME

1-5

Table 1-2. DSM Model Processor (Page 2 of 3)

SAWTIY FORT T?
•

, E £ LIST USED MEMBERS IX INDEX (EP-SAffTIX)
SAZNIT FORT R X X A INITIALIZE STATISTICAL VARIABLES
SCAKSG f OR T C

_<7' c c MESSAGE DATA MAINTAINED 3 Y HP
SCHED P LI M M X M SCHEDULE TRIP OR VEHICLE ON PEL
S CI FE L FOitT C X c FsL TIMING INPUT DATA
SCI MAX PORT c X c V- RUN TIME MAXIMA
SCISL PORT c X c c STATION LINK INPUT DATA
SciSYS PORT C X r*

s- c SYSTEM INPUT DATA
SCITL PORT c X c c TRIP LINK INPUT DATA
SCM EEL PORT c X C c PEL TIMING DATA MAINTAINED BY MP
SCMf'S PORT c X c c PEL STATISTICS MAINTAINED BY MP
5CMSL PORT c X c c STATION LINK DATA MAINTAINED BY MODEL PROC.
S CM SYS PORT c X c c SYSTEM DATA MAINTAINED BY MODEL PROC.
SCMTL PORT c X c c TRIP LINK DATA MAINTAINED BY MODEL PROC.
SCMT PORT c X c c TRIP DATA MAINTAINED BY MODEL PROC.
scnv FORT c X c c VEHICLE DATA MAINTAINED 3Y MODEL PROC.
SCMXTN PORT c X c c TRANSACTION HEADER DATA MAINTAINED BY MP
scz PORT c A c c STATISTICAL VARIABLES MAINTAINED BY MP
SEREor. PORT F< X X A WRITS EEROS MSG AND CONTINUE/TERMINATE
SHEAD PLI 1 X I I I EPLICIT (A—Z) ,P AR AFOR , S MAX'S IZE , SM AC EO
SHACRO P LI I

rr

ft. I I PLI MACROS
SMAXSIzE PLI I X I I COMPILE TIME SIZES
SMB KD PORT a X X X PLANNING TRIP BOARDING
SMDBRD FORT I A X X PLANNING TRIP DSBOARD1N

G

SMDLTR FORT R X X X DETRAIN VEHICLES FROM THE LEAD VEH OP TRAIN
SMDIVF PORT H X X X DIVERGE ? 0NCTIO ft

S

SMDIVG PORT a X X X ORDER STATION LINKS 3Y OCC/PSSU DO-OCC
SED1VS FORT 2 X X rr

A SEARCH FOE STATION LINK TYPE
SMBNTft PORT R X X v* ENTRAIN FOLLOWING VEHICLES TO LEAD VEHICLE
SMEVM FORT I X X X EMPTY VEHICLE MANAGEMENT
SMGDIF4 ASM R X X X DEFINE LAYOUT OF INPUT COMMON AREAS
S MLTin PORT I X X X LAUNCH TIME DELAY DUE TO SCHEDULE
S lift XSI FORT 1 X X X VEHICLE NEXT STOP DETERMINATION
S M RAG FORT E X X X GENERATE UNIFORMLY DISTRIBUTED RANDOM NUMBER
S.1KSEL PORT R X X X RANDOMLY SELECT POINT ON CUMULATIVE DIST.
SMTABO FORT E X X VA PREPARE A TRIP FOR BOARDING
SETAE vj 1 FORT I I I I ORIGINATE a VEHICLE
SftTLBikl 2 POST I X I I BOARD WAITING TRIP
SPIEL ASS E E E E INTERFACE TO INTERS DPT HANDLES
SSASAV A Sil R X X X INITIALIZE ARRAY SYSTEM STATUS AREA WORDS
S5LLA V PORT R X X W PROCESSING A VEHICLE/TRAIN LEAVING A SL
5SMGD PORT R X X A MODEL THE VEHICLE ON ITS CURRENT STATION LINK
SSMODA FORT R X X X VEHICLE PROCESSING AFTER A STATION LINK EVENT
S SM uDAI PORT I X I I AFTER DEBOARD EVENT
S SHOD A

2

PORT I X I I AFTER BOARD EVENT
S SM Oj/i B PORT I X I I AFTER LAUNCH EVENT
SSMCDB PORT R X X X VEHICLE PROCESSING BEFORE A STATION LINK EVENT
SSMCDB

1

PORT I X I i BEFORE TRAVEL EVENT
S3MODB2 PORT I y I i BEFORE DEBOARD EVENT
SSMODL3 PORT I X I i BEFORE BOARD EVENT
SSMODB4 FORT I X I i BEFORE JOINT EVENT
S SM OD e5 PORT I X I i BEFORE LAUNCH EVENT
SSMUDN PORT R X X X VEHICLE'S NEXT SL EVENT DETERMINATION
SSPEAC PLI 11 h X M STATION LINK PROMPT TEST
SSTESP PORT R V

AX X
'»•

A STATION LINK ENTRY TESTING S NEXT LINK DETERM
S UDoGO ASM V E E j- INITIALIZE PSEUDO-I/O (EP-XPSEUDO)
SULEA

V

PORT I X X X PROCESSING A TRIP LEAVING A TRIP LINK
S DM OD PORT R X X MODEL THE TRIP ON ITS CURRENT TRIP LI NX
SUPMAC PLI M 4S X M TRIP LINK 'PRO MPT EVENT TEST
SUREST PORT I X X X TRIP LINK ENTRY TESTING
SZHDR FORT R y X X WRITE SAMPLING HEADER RECORD
SZINT PORT R X X X CALCULATE INTEGRALS, AVERAGES S M1SC. STATS.
SZSTAT PORT R X X X COLLECT STATISTICS
SZSTATE FORT I X I I COLLECT STATISTICS ON THOSE ENTERING A STATE
SZSTATEN PORT I X 1 I COLLECT STATISTICS ON THOSE ENTERING STN STATE
S ESTATES PORT I X I I COLLECT STATISTICS ON THOSE ENTERING SL .STATE
SZSTATET PORT I X I I COLLECT' STATISTICS Oft THOSE ENTERING TL STATE
SZSTATL PORT I X I I COLLECT STATISTICS ON THOSE LEAVING A STATE
SZSTATLN FORT I X I I COLLECT STATISTICS ON THOSE LEAVING STN STATE
SZS TAILS PORT I X I I COLLECT STATISTICS ON THO$E LEAVING SL STATE

1-6

Table 1-2. DSM Model Processor (Page 3 of 3)

S2STATLT FORT I A I -L collect statistics on those leaving tl state
S LZ ERG FORT A X X A RESET STATISTICS
TIMES ASM P L E Tj GETS DATE S TIME PROM SYSTEM CLOCK (E? -DTI MEL)
TEA CSX A SM J?

i 4
p i

Y, X TE A C UK -MAI N EN TR Y
TRCBKP FORT E V

i .» X T RCB K P —M AIN ENTRY
TECXI FORT V

^ >

n p PRINTS HEADING LINE (EP-TSCBKP)
TRCLKV FuRT r

i
4_4 E V V PRINTS TWO LINES FOR AN A FG OMEN T (EP -TRCBKP)

T R C L X E FORT X.5
- J

f>
ij

T?
A_i

}p PRINTS THREE LINES FOR GEN. REG. (EP—TRCBKP)
UNDO ASM M / VI 1i YM TM STANDARD REGISTER RESTORE MACRO
VRAnD ? LI M n X M GENERATE A UNIFORMLY DISTRIBUTED RANDOM NUMBER
V i-.A ND N PLI M Rf X

A
u GENERATE A NORMALLY DISTRIBUTED RANDOM NUMBER

XGDIPF4 FORT R Y Y A READ VARIABLES THAT ARE 4 BYTES LONG
XGD1PH4 FORT r i Y X READ VARIABLES THAT ARE 2 3YTES LONG
XGDIPX4 FORT I\ i Y V READ VARIABLES THAT ARE 1 3YTE LONG
XNDLOt FORT p Y Y X READ GDI? -FOR MATTED DATA FROM ? TO 5
XPSEUDO ASM R i

V '7
A PROVIDE PSEUDO-I/O

XTB ACb X ASM R X Y
vr
A. PERFORM TRACE BACK

XTRCBKP FORT F Y Y A. BRITTS LINE DESCRIBING CALLING ROUTINE

A AM E LIB T
v

P
r

>

C P DESCRIPTION
I

p
E

U
L

*

D
*

u

A
ii

NOTATI

* -

ON S:

DOES NOT IN CLUD PREAMBLE CODE SEGMENTS (XXXXXXO)

TYPE:
R = ROUTINE
I = INCLUDED MEMBER
M = RAC DO (PL I OR A SM

)

C = COM HON AREA DEFINITION (WHICH IS INCLUDED)
S = ENTRY POINT (IN ROUTINE WHOSE HAKE IS GIVEN IN DESCRIPTION)

P
^X* = PDL GIVEN
I = PDL NOT GIVEN, SINCE IT INCLUDED 2IEM3ER AND TREATED IN THE PDL

OF WHAT IT IS INCLUDED IN
E = PDL NoT GIVEN, SINCE IT IS AN ENTRY POINT
A = PDL NOT G1V SN , SINCE IT IS A MACRO
Y = PDL NOT GIVEN, SINCE IT IS EXISTING CODE

COMPONENT DESCRIPTION:
X = COMPONENT DESCRIPTION GIVEN
I = COMPONENT DESCRIPTION NOT GIVEN, SINCE IT INCLUDED MEMBER

AND TREATED IN THE COMPONENT DESCRIPTION OF WHAT IT IS
INCLUDED IN

C = COMPONENT DESCRIPTION NOT GIVEN, SINCE IT IS A COMMON AREA
DEFINITION

E
M
Y

COMPONENT DESCRIPTION NOT GIVEN
COMPONENT DESCRIPTION NOT GIVEN
COMPONENT DESCRIPTION NOT GIVEN

SINCE IT IS AN ENTRY POINT
SINCE IT IS A MACRO
SINCE IT IS EXISTING CODE

PREAMBLE:
X = PREAMBLE GIVEN
I = PREAMBLE NOT G

AND TREATED IN
INCLUDED IN

VE N

,

SINCE IT IN Cl
THE PREAMBLE OF

.UDED
WHAT

MEMBER
IT IS

C = PREAMBLE
DEFINE

NOT
r ion

GIVEN, SINCE IT IS A COMMON AREA

E - PREAMBLE NOT GIVEN, SINCE IT IS AN ENTRY POINT
K = PREAMBLE NOT GIVEN, SINCE IT IS A MACRO
Y = PREAMBLE NOT GIVEN, SINCE IT IS EXI STING CODE

1-7

Table 1-3. DSM Output Processor (Page 1 of 2)

DSN - OUTPUT PROCESSOR CODE SEGMENTS S ENTRY POINTS (*)

NAME LIB T
Y
P
E

A.

Q
L '

C
*

D
•

?
R
lx

A
11

DESCRIPTION

ABIN FORT E E E E S ABIN—MAIN ENTRY
ATYPE ASM M YM YM y m STD MACRO GENERATION LIMIT MACRO
BNCHK PORT V

11 E E TPa ZBNCHK—MAIN ENTRY
CALLS ASM a YM YM YM STD ASSEMBLY LANG ROUTINE LINKAGE MACRO
CKFOLLOW PLI M B X ft CHECK FOLLOWER RECORD
DAYTIft FORT R X X X CONVERT DATE S TIME TO YY/M M/DD/HH/MM/S S
DblN FORT E E p r~i

iii ZDBIN—MAIN ENTRY
DLUo FLI M M X ft WRITE INTERMEDIATE OUTPUT
DO ASM 11 'iM Y .1 YM STANDARDIZED REGISTER SAVE MACRO
DTI ME

L

ASM R Y X X GET DATE & TIME FROM SYSTEM
DUMB IN FORT E r.p

la E f? Z DU MB IN -MAIN ENTRY
ENTER A S3 M fa YM YM STANDARD ASSEMBLY LANGUAGE ENTRY MACRO
ERROR FORT T? E E £ ZERROR-MA IN ENTRY
GRAPH FORT E E E V

A_» ZGRAP J-MAIN ENTRY
HEADER FORT E tp

ii E E S HEADER -MAIN ENTRY
HIST FORT v

ix
Ip p 77V

la S HIST-MAIN ENTRY
LBL ASM M YM YM YM STANDARD ASSEMBLY LANGUAGE TEST FOR 0 MACRO
LEAVE ASM M YM YM YM STANDARD ASSEMBLY LANGUAGE EXIT MACRO
LIST FORT TP E E SLIST—M AIN ENTRY
MRMX FORT IP

lx
y* E E SEN MX MAIN ENTRY

PSEUDO ASM V
la i. E L X P 52 U D 0 —M AIM ENTRY

READU2 PORT E T.
lx E £ SREADU2—MAIN ENTRY

RE A DO 3 FORT Va E E E SEE ADO 3 -MAIN ENTRY
READ04 FORT E E E E SLEAD04—MAIN ENTRY
REQTLU FORT E p E E S REQTLU -MAIN ENTRY
SETUP FORT E

r *

£. E E S SETUP—MAIN ENTRY
SHIFT FORT p J? E p Z SHIFT—MAIN ENTRY
SU1ST PORT R X X X OUTPUT HISTOGRAM OF DATA
SXIPFO FORT E E E E Z SK IPPO —MAIN ENTRY
SLIST FORT R X X X LIST ITEMS OR OUTPUT SUMMARY
STO FLO FORT E E E T

lx EP-ZSTORE
STORE FORT E E E E Z STORE-MAIN ENTRY
SUDuGO ASM E E E £ INITIALIZE PSEUDO-I/O (EP-XPSEUDO)
SOD AT

A

FORT 3 V X u INITIALIZE MAJOR COMMON AREAS
SODCLS FORT C X C c DECLARE MAJOR COMMON AREAS & PARA FOR
SOD EPS FORT C X C c DECLARE MAJOR COMMON AREAS
SUNTIX ASM R X X X ESTAB.PaRM FIELD ADDRESSIBILITY
SOUPTX ASM E E E TP

AO PASS MEMBER NAME TO SOWTIX (EP-SONTIX)
SOP SUM FORT R V

.A. X A PERFORMANCE SUMMARY PROCESSING
SOUTPT FORT R X X X BSM OUTPUT PROCESSOR CONTROL
SOUTPT1 FORT I I I I PROCESS A DATA REQUEST
SOUTPT

2

FORT I I I I PERFORMANCE SUMMARY FILE PROCESSING
SOWTI

X

FORT R A X X PARSE PABft LIST & WRITE LOAD MODULE NAME
SOW TI '4 FORT E x’« E L LIST USED MEMBERS IN INDEX
SOWTI 1 FORT TP

LX
T? E WRITE PERSUH MEMBER NAME IN PER SUM

SOZNIT FORT E X X X INITIALIZATION OF OUTPUT PROCESSOR
SPIEL ASM la E E E INTERFACE TO INTERRUPT HA ND LER (EP-T RACBK)
SEEAD02 FORT P X X X READ SYSTEM STATISTICS
SSEAD03 FORT R X X X READ STATION LINK STATISTICS
S RE AD 04 FORT R X' X X READ TRIP LINK STATISTICS
S REQTLU FORT R X X V R EC ORD/ ? EQ U E S T CORRELATION
S SETUP FORT R X X X INITIALIZE OP DATA TABLES
S3PLOT FORT R X X V PLOT OUTPUT CONTROL
SZRLA

J

FORT B X X X DATA ACQUISITION OF SYSTEM CONSTANTS
TIMES ASM E E E E G ITS DATE & TIME FROM SYSTEM CLOCK (EP-D TIME L)
TRACER ASM £ E E E XYRACBK—MAIN ENTRY
TKCBKP FORT E l.1

la E E XTRCBKP-M AIN ENTRY
TKCKI FORT E p* E E PRINTS HEADING LINE (EP-TRCBKP)
TRCJKV FORT o

£, E E E PRINTS TWO LINES FOR AN ARGUMENT (EP—TRCBKP)
TKCBKfi FORT E E E V PRIN'TS THREE LINES FOR GE N . REG . (EP-TR C3KP)
UNDO ASM ft y m YM YM STANDARD REGISTER RESTORE MACRO

1-8

Table 1-3. DSM Output Processor (Page 2 of 2)

XPSEUDO ASM R Y Y X PROVIDE PSEUDO-I/O
XTRACBK ASA R Y Y X PERFORM TRACEBACK
XTBCBKP FORT R Y Y X PRINTS LINE DESCRIBING CALLING ROUTINE
ZABl'N PORT R X X X BIN REALLOCATION
l* c* 1 L FORT F X X X GET LENGTH OF DATA IN BIN
Z3NCH

K

FORT R X X X BIN EXPANSION
ZCA MSG FORT C X C c ERROR MESSAGE COMMON
ZDBIN FORT R V

j\ X X ALLOCATE BIN STORAGE
ZDUUBIN FORT R X X \r

II PHUT CONTENTS OF BIN AREA FOR DEBUG
Z ERROR FORT R X X X WRITE ERROR MSG AND CGNT/TEPM
Z PL AG FORT R X X X INTERBED.OUTPUT FLAG SETTING
ZGRaP

J

F ORT R V
JtV

YA X PRODUCE TIME SERIES PLOT
ZHEADER FORT R A X X READ NEXT HEADER RECORD
Z3IST FORT R X X X HISTOGRAM OUTPUT CONTROL
ZLIST FORT R A X Y LIST OUTPUT CONTROL
ZMNMX FORT R x X X COMPUTE MINIMUM AND MAXIMUM VALDES
ZODCLS FORT C X c c DECLARE VARIABLES GLOGAL TO OP'S
ZPLOT FORT XL

-<?
Ai E E S ZPLOT- “AIN ENTRY

ZRCLEA

N

FORT E X X X RESET BIN ADDRESSES
ZREAD FORT TP

Ej E J> S ZREAD —MAIN ENTRY
ZREQU PORT R X X VA REQUEST HANDLING
ZSHIF

T

FORT S X X X REALLOCATE BIN STORAGE ASSIGNMENTS
ZSKIPPO FORT K X X X SKIP A FOLLOWER RECORD
Z ST ORE FORT B la. X X STORE DATA IN BIN
ZSYSMAX FORT C y C c COMPILE TIME MAXIMA

NOTATIONS:

* = DUES NOT INCLUDE PREAMBLE CODE SEGMENTS (XXXXXXO)

TYPE:
R = ROUTINE
I = INCLUDED MEMBER
8 = MACRO (PLI OR ASM)
C = ODMMOM AREA DEPIN ITION (WHICH IS INCLUDED)
B = BLOCK DATA SUBPROGRAM
E = ENTRY POINT (IN ROUTINE WHOSE NAME IS GIVEN IN DESCRIPTION)
? = FUNCTION SUBPROGRAM

PDL

:

X =
I =

tt

i

PDL GIVEN
PDL NOT GIVEN, SINCE IT INCLUDED MEMBER AND TREATED IN

OF WHAT IT IS INCLUDED IN
PDL NOT GIVEN, SINCE IT 15 AN ENTRY POINT
PDL NOT GIVEN, SINCE IT IS A MACRO
PDL NOT GIVEN, SINCE IT IS EXISTING CODE

THE PDL

C 0 MPON LN T D ES CR IPTION

:

X = COMPONENT DESCRIPTION GIVEN
I = COMPONENT DESCRxP TION NOT GIVEN , SINCE IT INCLUDED ME K3ER

AMD T RE A TED IN THE COMPONENT DESC LIPTION OF’ WHAT IT IS
I NCLUDE D IN

C = COMPONENT DESCRIPTION n or GIVEN

,

SINCE IT IS A COMMON A HE A
DEFINITION

E = COMPONENT DESCRIPTION NOT GIVEN

,

SI MCE IT IS AN ENTRY POINT
M = COMPONENT DESCRIPTION Nor GIV EN , SI NCR IT IS A MACRO
Y = COMPONENT DESCRIPTION NOT GIVEN

,

SI NCL IT I s EXISTING CODE

PREAMBLE:
X
I

c

E
H
Y
3

PREAMBLE GIVEN
PREAMBLE NOT GIVEN, SINCE IT INCLUDED MEM3ER

AND TREATED IN THE PREAMBLE 0? WHAT IT IS
INCLUDED IN

PREAMBLE NOT GIVEN, SINCE IT IS A COMMON AREA
DEPIN IT ION

PREAMBLE NOT GIVEN, C* 1

-D -4. NCE IT IS
PREAMBLE NOT GI V E N , SI NCE IT IS
PREAMBLE NOT GIVEN, SI N CE IT IS
PREAMBLE NOT GIVEN, SI NCE IT IS

AN ENTRY POINT
A MACRO
EXISTING CODE
SIMPLY A BLOCK DATA SUB PROG RAM

1-9

Additionally a programmer reading this manual is expected to be
familiar with the User's Manual; card formats, error messages, and the
like which are given in the User's Manual are not repeated here.

Overlay segments ,exi st in the DSM-IP and MP, but only for the purpose
of obtaining common area starting and ending addresses for checkpointing.
No code segments in any processor are overlaid. These data overlays
will be discussed below.

This section identifies the programming languages and system support
software used in developing the DSM.

System Control Program

1.

IBM 0S/VS2 (SVS or MVS options)

o Time Sharing Option (TSO)

Compilers/Editor

1. FORTRAN IV (H Extended)

2. Assembler (H)

3. PL/1 Optimizer

4. Linkage Editor

Others

1. 0S/VS2 Utilities

2. PARAFOR (Structured FORTRAN)

3. Structuring Programming Facility (TS0-3270)

The following computing system hardware is required:

Central Processing Unit

IBM System 370 Model 145 or 148 processing capability at a minimum.

High-Speed Core Storage

Approximately 330k bytes of problem core is required for the Model

Processor. Note that these figures do not include System Control Program
core requirements, which can vary between 300,000 bytes and 2 million
bytes.

1-10

Direct-Access Storage

Storage requirements for various functional areas of DSM are given
below, in units of IBM 2314 cylinders (approximately 144,000 bytes).

1. Program Development Libraries -- 20 cylinders

2. Input from Data Base (per configuration) -- 2 cylinders

3. Trip File (1 hour of 1,000 trips assumed) -- .2 cylinders

4. Vehicle Files -- 2 cylinders

5. Checkpoint Files — 10 cylinders per file

6. Raw statistical Output (assuming one hour run, one minute
sampling interval) -- 10 cylinders.

Magnetic Tape

DSM has no explicit requirements for magnetic tape storage, but it

may be a preferrable medium over direct-access storage for the following
f i les:

1. Input from data base (2 cylinders)

2. Checkpoint Files (10 cylinders per file)

3. Raw Statistical Output (10 cylinders for 3,600 samples)

4. Trip/Vehicle Sequence File.

The choice of tape over disk will be based primarily on the amount
of disk space available, the frequency of access required, and the opera
tional procedures at the computing center being used. For planning pur-
poses, a 2,400 foot reel of tape recorded at 1,600 bytes/inch has a

capacity equivalent to 329 cylinders of 2314 disk space.

Unit Record Equipment

DSM will require a card reader for input data and a high-speed
printer for output.

Display Terminal

The IBM 3270 Display Terminal or equivalent or a standard printer
type terminal is required for online file edit and online job submission

1-11

Storage and processing allocation for the three processors is as

follows:

DSM Input Processor

0 Programs 118k

0 Data 50k

DSM Model Processor

0 Programs 247k

0 Data 67k

DSM Output Processor

0 Programs 110k

0 Data 189k

1-12

SECTION 2. PROGRAM DESCRIPTION

Figures 2-1, 2-2, and 2-3 contain control tree overviews of the code

segments in the IP, MP, and OP, respectively.

The diagrams in Appendix B illustrate the DSM high-level design
through the use of Hierarchy plus Input-Process-Output (HIPO) diagrams.
The Visual Table of Contents illustrates program organization and con-

tains the names and identification numbers of the detail Input-Process-
Output diagrams that define the processing to be performed. These
diagrams should be used in conjunction with the Process Design Language
(PDL) descriptions contained in Appendix A, which provide descriptions
of the program design in greater detail. Where the Visual Table of

Contents and Input-Process-Output diagrams reference a segment name
and identification number, that segment is further expanded in both an

Input-Process-Output diagram (having that identification number) and a

PDL segment (having that segment name). If an Input-Process-Output
diagram references a function by segment name only, then the design of

that segment will be found in the PDL segment having that segment
name. These HIPO diagrams are intended to supply a high level introduc-
tory description of the processing; PDL and component descriptions
provide the detail.

The following three sections give an overview of the three
processors.

2.1 INPUT PROCESSOR

The Input Processor (IP) reads all user input data and builds
structured data files for Model Processor (MP) use. The user input
data is one or more of four types:

o System characteristics

o Runtime data

o Trip demand

o Vehicle demand

2-1

INPUT PROCESSOR

SACOMN

SIPARM
I

SINPUT

SPIEL

ND30R

ORDER INPUT COMMONS

SAVE PARAMETER LIST

INPUT PROCESSOR CONTROL

INITIALIZE PGM INTERRUPT HANDLING

READ GD IP DATA FORMATS

GDI? 4 READ GDI? DATA

| GBIPP4
| GDI PH 4
I

Irr D I ? X 4
| ERROR

SINPUT

1

SIN PUT 2
I

| SAELAG
t

| ERROR

SII NIT

LODCOM
si h.D a R

1

| SISADD

SIPLST
I

| —SIM NAM

SI PS A

V

SINPUT3

SITLGN
I

| SITDGN2
| SITDGN 3
1 SI TDGN 4

| SICUMP
| SMRN'G
| SMRSEL

READ FULLWORD DATA
READ HALFWORD DATA
READ BYTE SIZE DATA
WRITE ERROR MESSAGE

READ SYSTEM CHARACTERISTICS
READ RUNTIME DATA

SET INTERMEDIATE OUTPUT FLAGS

WRITE ERROR MESSAGE

INPUT INITIALIZATION

LOAD ADDRESS AND LENGTH OF SYSTEM CHARS
PASS SYS CHAR AD DR AND LGTH TO SISADD

SAVE ADDRESS AND LENGTH OF SYS CHAR

PROCESS PARAMETER LIST

PARSE PARAMETER LIST

COMMON FOR ADDRS OF SYS CHAR AND IP COMMONS

READ TRIP DEMAND DATA

TRIP DEMAND GENERATION

VERIFY AND INITIALIZE INPUT
WRITE ERROR MESSAGES
WRITE TRIP GIN . SUMMARY

BUILD CUMULATIVE PROBABILITY DISTRIBUTION
GEN RANDOM NUMBER BETWEEN 0-1
SELECT RANDOM POINT ON DISTRIBUTION

I I

| I
SMRNG

I

| eRsOH

SINPUT4
| SINPUT 4 A
| SINPUT43
j

SI NPUT4C

S I V DG N

| SIVDGN2
|

| — S I.VDGN2 A
|

| —SIVDGN2B
I

| SIVDGN4
| SIVDGN5
|

SIVDGN6
| SIVDGN7

GENERATE RANDOM NUMBER

WRITE ERROR MESSAGES

READ VEHICLE DIM AND DATA
READ NEXT STOP SELECTION DATA
READ INTER ARRIVAL TIME DATA
READ TnIP SIZE DATA

VEHICLE DEMAND GENERATION

VERIFY AND INITIALIZE INPUT
CONVERT PROBABILITY DISTRIBUTIONS
WRITE sRRO 3 MESSAGES

GENERATE SCHEDULED VEHICLES
GENERATE DEMAND RESPONSIVE VEHICLES
GENERATE ONBOARD TRIPS
WRITS VEHICLE GENERATION SUMMARY

Figure 2-1. Input Processor (Page 1 of 3)

2-2

SI COMP

SIGIAT
I

| SMRNG
| SMHSEL

|
-SMRNG

SMRNG

SM RS EL
I

1 SMRNG

ERROR

BUILD CUMULATIVE PROBABILITY DISTRIBUTION

GET NEXT VEHICLE INTERARRIVAL TIME

GEN RANDOM NUMBER BETWEEN 0-1
SELECT RANDOM ENTRY IN CUM . PROB. DIST

.

GEN RANDOM NUMBER BETWEEN 0-1

GEN RANDOM NUMBER BETWEEN 0-1

SELECT RANDOM ENTRY IN CUM. PROB. DIST.

GENERATE RANDOM NUMBER

WRITE ERROR MESSAGE

SI S CFG STATION CONFIGURATOR

SISCFG

1

SISCFG2
SI5CFG3
SI5CFG4

ESTABLISH NUMBERS FOR LINK TYPES
MISCELLANEOUS ERROR CHECKS
BUILD STRUCTURED TABLES
BUILD UPSTREAM POINTERS

—SISCFG4 A—S IS CFG 4

B

—S IS CFG 4

C

—SIS CFG 4

D

—SISCFG4E— S IS CFG 4

F

—SISCFG4G—SI3CFG4H

BUILD INPUT QUEUE US LINKS
BUILD DOCK US LINKS
oUILD OUTPUT QUEUE US LINKS
dUILD OUTPUT RAMP US LINKS
BUILD STORAGE US- LINKS
cUILD DOCK TO STORAGE US LINKS
COMPUTE DL US LINKS
BUILD MO A US LINKS

SISCFG5 BUILD DOWNSTREAM STATION LINKS

!
—SISCFG5

A

|
—SISCFG53

|
—SISCFG5C

|
—SISCFG5D

|

—3ISCFGSE
|
—SISCFG5F

| —SISCFG5G

BUILD INPUT RAMP D5 LINKS
BUILD INPUT QUEUE DS LINKS
BUILD DOCK DS LINKS
BUILD OUTPUT OUEUE DS LINKS
BUILD STORAGE TO INPUT DS LINKS
BUILD UL DS LINKS
BUILD MI 3 DS LINKS

ERROR WRITE ERROR MESSAGE

SICHCK

SICHCK

1

SINERR
I

| ERROR

ERROR

PARAMETER CHECKING AND INITIALIZATION

VERIFY CERTAIN LINK/EVENT COMBINATIONS
CALL ERROR MESSAGE ROUTINE

WRITE ERROR MESSAGE

WRITS ERROR MESSAGE

-SIRE?! INITIAL CONDITIONS REPORT

SI KEPT 10
SIREPT2
SI KEPT

3

SI SEPT

4

DATA FORMATS
LOCAL DATA DEFINITIONS
WRITE TRIP AND VEHICLE CHARACTERISTICS
WRITE SERVICE CHARACTERISTICS SUMMARY

I

|—S IREPT4A
| —SIREPT4B
|
—SIREPT4C

|
—SIREPT4D

SIREPT5

|
— S IREPT5

A

|—SIREPTSB

WRITE VEHICLE SPACING AND HEADWAY DATA
WRITE EMPTY VEHlvIEL POLICY DATA
WRITE SIMULATION CONTROL DATA
WRITE ROUTE ASSIGNMENT DATA

WRITE STATION LINK SUMMARY

STATION LINK DATA
VALIDATE DOWNSTREAM LINKS AND DIVERGE FNS

Figure 2-1. Input Processor (Page 2 of 3)

2-3

I
| —SIREPT5C LINK CHARACTERISTICS CHECK
| —SIREPT5B MULTIPLE U PS TRK/DN STEM LINKS + EVENTS WRITE

|
SIREPTb

I

| SI CU HP
I

| 5INERR
I I

|

| ERROR
I

| ERROR

SI3WRT

S1NERR
I

|
ERROR

SI W NAN (SP-SIENAM)
ERR Os.

WRITE TRIP LINK SUMMARY

CONVERT TO CUMULATIVE PROBABILITY LIST.

CALL ERROR MESSAGE ROUTINE

WRITE ERROR MESSAGE

WRITE ERROR MESSAGE

WRITE STRUCTURED DATA PILES

CALL ERROR MESSAGE ROUTINE

WRITE ERROR MESSAGE-

LIST PILES IN INDEX
WRITS ERROR MESSAGE

TR ACSK

TRC3KI
TRCBKV
TRCBKR

PROCESS PROGRAM INTERRUPT

PRINT INTERRUPT HEADING
PRINT 2 LINES TOR ARGUMENT
PRINT 3 LINES POR GENERAL REGISTERS

NOTES:
ALL SUBROUTINES ARE
CALLING SUBROUTINE.
NO PREAMBLES. COMMONS, OR INCLUDED SE’GME
ONLY ARE LISTED. (SIPSAV IS AN EXCEPTION

REINED IN SUN IT

IDENTIFIED BY THE ENTRY POINT USED BY THE

BOTH COMMON DE D IN AND A

NTS WITH DATA DEFINTTI
TO THIS SINCE IT IS

ENTRY POINT IN SIPSAV.)

ONS

ALL INCLUDED CODE SEGMENTS ARE IDENTIFIED BY THE NAME OF THE
INCLUDING SUBROUTINE PLUS A SUFFIX.

Figure 2-1. Input Processor (Page 3 of 3)

2-4

,101) EL PROCESSOR CONTROL GRAPH OF MAJOR COMPONENTS

SANTI

X

AM A IN

SAINIT

SANTSA

S ANSA

V

SADADD
3 aCKB

<1 N I T MEMBER STRING FOR INDEX>

<M A I N CONTROL L00?>

<S YSTE M IN IT IA LIZA TIGN

>

<1 NIT SYST. STATUS AREA ADDRESS ES>

Cl NTT CK?T S SYST. DATA SEA D>

<1 NTT INPUT AREA A DDRS & M SG 3>
<INIT CKPT/RESTART ?ROCSSS>

SA.R3ST (E . P . IN SACKS) < PER FORM RES TART >
I

| SAPFEL CSCiiED ULE XT N ON F EL>

SAU?rX(E.P. IN SAN'TIX) CPAS S MEMBER NAME STRING >

| SAtvTIX <P ARSE PARK LIST>

| DAY TIE <CON YE FT DATE S T I M E >
I

| DTI MEL CGE'T DATE S TIME FM SYST E M>

SANBTA (E.P.IN SAD ADD) <RE AD INPUT INTO INPUT COMMONS >
e . v t <; T VT T S
SANXTN <1 NIT TRANS ACT IONS

>

<1 NIT INTERNAL MODEL COMMONS>SANMDL
S AZ NIT

j SZZERO

•SASCTL

Q CMOD

ssmo:

ShDETR
S ?!BED

CINIT STATISTICS

<R 2SET S TA TI ST ICS

>

CCONTRGL 5 L EV£?1TS>

CSL EVENT MODE LINO
<V£H PROCESSING BEFORE SL EVEN T>

CD ITSA IN PROCESS IN G>
CP LAN BOARDING

>

| SMB SET < SELECT ?T FROM CUMM.DIST.P
I

t
SMR MG CGEN UNIFORM RAND.NO.>

SMD BSD CPLAN DSBOARDING>
I

| SMRSEL < SELECT PT FROM CUMM.DIS?.>

SAL TIM

SSMODN
I

| SZSTAT

SSMODA

S S P M A C
SUPMAC
SfcENTR
SMNXST

CCALC. LAUNCH D ELAY

>

CCGLLECT S TATI STIC S>

CFIND NEXT SL EVEN T>

CCCLLSCT S TA TI STIC S>

CVEH PROCESSING AFTER

< S L PROMPT TFS T>
CTL PROMPT TES T>
CEATRAIN PROCESS IN G>
CFIND NEXT STATION>

CT T? VENT >

| SMEVM CEMPTY VLH MANAGEMENTS

Figure 2-2. Model Processor (Page 1 of 3)

2-5

SAUCTL

5AASYN

S AS AMP

SACKPT

SASPRM

SAUPRM

SMTABQ

—-S ZS TAT

S STS ST

| S HD IV ?'

I I

|

| SMDIVS
|

| SKDIVO

SSLSAV
I

| SSMOD
| SSPMAC

SZSTAT

SUMOD

SZS . h. -i.

SUTEST
SOLS AV

| SOM OD
| SUPS AC
| SZSTAT

| SHR SSL SSELECT PT RANDOMLY>

<T RIP AT BOARD QUEUE PROCESS>

SSPMAC <SL PROMPT TEST>
SZSTAT <COLLSCT STATISTICS>

<COLLECT S TA TI STIC S>

SSL ENTRY TEST IN G>

<DIV E3 GE FUNCT IONS >

SSI ARCH FOR SL OF GIVEN TY PE>
<0 RDER SLS >

<SL LEAVE PROC ESS I NG >

SSL EVENT MPOD ELIN G>
SSL PROMPT TES TING >

SCOLLSCT S TATI STIC S>

STL EVENT CONTROL>

STL EVENT MODE LING >

SCOLLSCT STATI STICS>

STL ENTRY TE ST ING>
STL LEAVE ?ROCESSIMG>

STL EVENT MODELING >
STL PROMPT TES TIN G>
SCOLECT ST AT IS TICS

>

SMTABQ SPROCESS TRIP AT BOARD QUEUE>

SPESFOHM ASYNCHRONOUS P30CESS>

ND50R
SaFjt.IL

I

| SSPMAC
I

SOP K A C

SHE AD GDI? D AT A>
SFAILURE ACTIVITY ?ROCESSING>

SSL PROMPT TES TING

>

STL PROMPT TES TING

>

SAFLAG
SAC KPT (E
SAPFEL
SATORG
3 AV ORG

S A FINN
SZEDR
S A I N T
SZZERO

SST2ST
SSLEAV
SSMOD

SUTEST

SFLAG CARD PROCESS ING>
P. IN SACK R) <W RITE CKPT RECORD >

SSCHEDULE XTN ON F EL>
SHOVE ARRIVING TRIP>
SHOVE ARRIVING VEHICLE>

<W RITE RAW STATISTICS ?ILE>

SWRITE SNAPSHOT REPORT>
<W RITE SAMPLE HEADER R ECOR D>
SEND POINT I NT EGRA LS >
SR E SET STA TIST ICS>

SACKS) SWRITE CHECKPOINT SECORD>

SSL PROMPT PROCESS ING>

SSL ENTRY TESTING>
SSL LEAVE PROC ESSI NG>
SSL EVENT MODE LINO
STL PROMPT PROCESS ING>

STL ENTRY TESTING>

Figure 2-2. Model Processor (Page 2 of 3)

2-6

| SULEA'V
| SUMOD

!

| SATED
| SATORG
I I

| SUMOD
| SZSTAT

SAVED
SAVGRG

I

| SSMOD
t

SZSTAT

I

| SZSTAT

S ARFEL
S APTmm
SAFINS

I

| SAWTIW (EP-SAWTIX)

<TL LEAVE PROCESS! NG>
<TL EVENT KOBE LING >

<READ TRIP ?ILE>
<MOVE ARRIVING TRI?>

<TL EVENT MODE LING

>

<CCELECT S TATI STIC S>

<R E'AD VEHICLE ?ILE>
<MOV£ ARRIVING VEHICLE>

<SL EVENT MODE LINO
<COLLE CT S TATI STIC S>

<S CHED ULE XTN ON F EL>

<C OLLE CT STATI STIC S>

< REMOVE NEXT XTN FROM FEL>
< WRITE FINAL MODEL R E? OR T>
<W RITE FINAL SYSTEM REPORT

>

<L 1ST FILES IN INDEX>

NOTES

:

1 . XXX

2

3

|
IMPLIES THAT

| YYY SEGMENT OF
THE SUBSTRUCTURE OF A

REPEATED EVERYWHERE
ONLY MAJOR COMPONENTS

YYY IS CALLED 3Y OR IS A MOJOE
XXX

COMPONENT APPEARS ONLY ONCE (I .S
THE COMPONENT APPEARS) .

ARE INCLUDED

.

IN CLUDED

IS NOT

Figure 2-2. Model Processor (Page 3 of 3)

2-7

DSM OUTPUT PROCESSOR:
SON TIX

| SOUTPT

| ZD3IN
| SZREAD
| ZREOU

ZREOU
|
-—ZBNCHK

Z SHI FT

<EST ASLISH PARM FIELD
ADSH OUTPUT PROCESSOR
AI SI TI ALIZ ATIOI*

>

AALLOC ATI LIN STOR AGE>
<ACQ UI RE SISTER CONSTANTS>
<INI TI ALIZ E REQUEST TALLE>

AREQUEST H ANDLING>
<3 IN EXPAN SIGN

>

DEALLOCATE BIN ST ORAG

ADDRLSSA3]
CO NT 80L>

LI TY>

AS SIGN SENT S>

Q '71
;a d
-— S SETUP
-—SZREQTLU
-— Z READER
-— Z SKI PRO
-

—

SEE AD 02
I STO

<D AT A ACQUISITION
<1 SI TI ALIZ L 0? DATA TABLES >
<R ECOR D/RE QUEST CO RREL AT 10 $>
<READ READER RECOR D>

FLO

ASKIP
<READ
AS TOR]

| ZABIN

A POLLONER R ECOR D>
SI ST IN STATE STIC S>
DATA IN 3 IN

>

<31 N HE AL LO CA TI 0 N

>

<E A D 0 3
| STO

SEE AD 04
| STO.

Z EC LEAN

, ZSHIFT AREALLOCATE BIN AS SIGN SENT S>
<REA D STATION LINK STATISTICS^

?L0 < STO RE DATA IN B IN >
AREA D TRIP LINK STATISTICS

>

DO AS TO RE DATA IN BIN>
ARES ET BIN ADDRESS ES>

ZLIST
| SLIST

Z HI ST
| ZHNMX
| ZBNCHK
| SHI ST

SZPLOT
| Z GRAPH

-Z FLAG
Z DU M3 IN
SOPSUM
Z 31 NL
50UPTX (EP -SON TIX)

| S0 NTIX
t

DAY TIN
I TIN

S ON TI W (E? - S 0 'W TI
X

'

SGWTIY (E? —SON TIX'

A] OUTPUT CON TR 0L>
ALIST ITEM
AH I S TO GitAM

: OR OUTPUT
OUTPUT CO NT

SUKM ARY>
ROL>

^compute minimum and maximum values>
A3 IN EXPANSIONS
AOUTPUT HISTOGRAM OF D ATA>
APLOT OUTPUT CONTROL>
APRODUCE TIME SERIES PLOT>

ASET INTERMEDIATE OUTPUT F LAGS >
AD CMP BIN HEADER S>
APERFO RM AN CE SUMMARY ?ROCESSING>
AFIND BIN LENGTH>
APASS MEMBER NAME INFO
APARSE PARK LIST>
ACONVEKT DATE 0 TIME>

*S (SP—DTIMEL)
AFIND DATS & TI ME >

ALIST FILES IN INDEX>
ALIST PERSON MEMBER NAME IN ME M3ER >

•NOTES :

1

3
4

CALLED
XXX

|
IMPLIES THAT Y YY IS

| YYY SEGMENT OF XXX
THE SUBSTRUCTURE OF A COMPONENT APPEARS ONLY ONCE (I .E . , IS NOT

REPEATED EVERYWHERE THE COMPONENT APPEARS)

.

ONLY MAJOR COMPONENTS ARE INCLUDED (EG., ERROR I
SEE SUBLOGIC TABLE S COMPONE NTS/EN TR Y POINT LIST

BY OR IS A MOJOft INCLUDED

; EXCLUDED)
ALSO .

Figure 2-3. Output Processor

2-8

The resulting structured data files are

o System characteristics

o Runtime

o Trip arrival

o Vehicle arrival

o Run index

The IP receives control via a Job Control Language cataloged
procedure which provides the information necessary to access both input
and output data files. Before reading any user data, the IP initializes
several data items in preparation for user input or sets default values
for some items in the event that no user data is supplied.

The first user data file read is the System Characteristics file
which supplies the initial values (zero time data) for all system variables
required by the MP and possibly processor options required by the IP. The
only other valid System Characteristics data types are comments accompanying
the data.

The second user data file read is the Runtime file which may con-
tain both zero time data and time tagged data. In addition to data items,
IP options and comments, the Runtime file may contain other input data
types:

o Checkpoint request

o Simulation stop time

o Run index data

o Failure/repair request

o Synchronous trip

o Asynchronous vehicle

o Flag request

The IP writes run index data directly to the run index file and
processes zero time items and flag requests immediately. All time tagged
data and the rest of the above list, the IP writes to the structured
Runtime file for later use by the MP.

2-9

The rest of the IP proceeds based upon the IP options entered in

either the System Characteristics or Runtime data. If the user has

entered the trip generation option, the IP reads the user's Trip Demand
file and generates structured Trip Arrival file whose characteristics
conform to those specified in the input file. If the user has also
entered the vehicle generation option, the IP reads the user's Vehicle
Demand file and generates the appropriate structured Vehicle Arrival
file. If the user has specified the last available option, model setup,
the IP does several things. First the IP builds the structured data
tables which define the station link configuration. Next the IP converts
user time input values into internal clock units and validity checks
much of the System Characteristics data as it writes the Initial Condi-
tions Report.

If no serious errors are found while processing user input, the IP

writes the structured System Characteristics file. For each file that
the IP writes, it also adds an entry to the Run Index file.

2.1.1 Architecture

One routine, SINPUT, controls all IP functions calling subroutines
as indicated by user input. Figure 2-4 shows the hierarchy of the IP.

All of the Process Design Language (PDL) describing IP functions indicated
by Figure 2-4 is located in Appendix A.

All communication to and from the IP is done by data files. The
user directs the IP by providing input data files containing system data
and processing options. The IP in turn directs the MP by passing user
data and IP generated data to the MP in structured data files. Figure 2-5

shows the relationship of the IP to its input and output data files.

2-10

SINPUT INPUT PROCESSOR CONTROL ROUTINE

3IINIT DATA INITIALIZATION

3ITDGN TRIP DEMAND GENERATION

SIVDGN
j

VEHICLE DEMAND GENERATION

i
3I3CPG STATION CONFIGURATION

! SICKCK
i

DATA CHECKING AND INITIALIZATION

: SIREPT INITIAL CONDITIONS REPORT

31BURT SYSTEM CHARACTERISTICS WRITE

Figure 2-4. Input Processor Control Hierarchy

2-11

Figure 2-5. Input Processor

2-12

2.2 MODEL PROCESSOR

The DSM Model Processor provides an event processing structure for modeling the

detailed operation of an automated transit system station 0 Events are scheduled within

the simulation for occurrence or completion at some future time, in response to transaction

processing requirements. Transactions are defined within the simulation environment as

transit vehicles, trips, and system service requests. Transactions are appropriately

processed when the event time for which they were scheduled is completed and the next

event for the transaction becomes the next most imminent task to be performed in the

simulation system. Transactions are rescheduled when processing for the current event

of the transaction is completed and the next required event and its completion time has

been determined. In the case of vehicle transactions, if the next event cannot be

performed, the transaction is queued as waiting to begin its next required event.

Dequeueing and rescheduling of the transaction in this case occurs in response to a

system service request (scheduled as the result of another transaction event completion)

becoming the next most imminent task to be performed. This concept of transactions

and discrete event scheduling is more fully described in Section 2.2.1, Architecture.

Execution of the Model Processor (MP) is initiated by the invocation of a cataloged

job control procedure contained in the procedure library. Upon entry, the MP performs

initialization of the simulation experiment. This initialization begins with the reading

of structured data files created as the result of input processing. The Model Processor

Control module, SAMAIN, controls the order of processing as shown in Figure 2-6.

SAMAIN invokes the lower-level segments as driven by the Future Event List.

Once the required input is read, the MP reads and updates the index file to

reflect the current execution of the MP. Initialization then proceeds with establishing

the event timing and control mechanism, defining required transactions and scheduling

of initial system service transaction for accommodating the first trip arrival, first vehicle

arrival/ and sampling asynchronous data input. Initialization for both the trip link and

station link models is then performed.

Upon the completion of initialization, the basic control loop for accomplishing the

recognition, scheduling, and processing of transaction events is started. This control

process provides for obtaining the next transaction to be processed, updating the

simulation clock, and invoking required architectural components to perform the

processing as required in response to a transaction's event occurrence.

The processing components invoked by the architecture perform the processing tasks

as indicated by the active transaction. This processing may cause the reading of

asynchronous data input and data summarization and recording or processing within the

simulation models (station links or trip links) of the simulation system. As the result of

processing, the transaction which invoked the processing may be rescheduled to occur

depending upon the processing task performed. Service request
transactions for sampling and system checkpointing are always
rescheduled to occur at a fixed interval in the simulation. Service request

2-13

0)

7)

l/)

7)

7)

U)

MDDtL PROCESSOR

SAM A I

N

SA1NIT < INITIALIZE SIMULATIONS

SASCTL SVEHICLE (STATION LINK) EVENTS

SAUCTL STRIP (TRIP LINK) EVENTS

SAASYN SASYNCHRGNOUS EVENTS

SASAMP <SAMP LI NG EVE NT >

SACKPT <PER IODIC CHECKPOINT EVENTS

SASPRM < ST AT ION LINK PROMPT EVENTS

SAOPRM STRIP LINK PROMPT EVENTS

satorg
SATRD

STRIP ORIGINATION EVENTS

SAVORG
S AVRD

SVEHICLE ORIGINATION EVENTS

SAF I NM
SAF I NS

SSI MULATTOS' TERMINATION EVENTS

Figure 2-6. Model Processor Control Hierarchy

2-14

transactions, which are used to cause recognition of trip and vehicle arrivals
or model data updates, are rescheduled to occur at the time indicated by

the next asynchronous trip or data record to be processed. Transactions which
are used for restarting queued transactions within the modeling subsystem
are not rescheduled, but reclaimed and returned to the available pool of transac-
tions. Reuse of the transaction depends upon operational conditions within the
modeling subsystems. Vehicle transactions as described previously are
rescheduled or queued depending upon whether their next event can be performed
within the modeling subsystem. After transaction processing is completed, con-
trol is returned to the architecture for execution of the system control
mechani sm.

The end of simulation occurs in response to recognition of a termination
transaction. This results in performing simulation termination activities and
ending the simulation experiment.

2-15

2.2.1 Architecture

The MP architecture is designed to provide a separation between system and model

dependent functions. Those functions which are system dependent represent the basic

control mechanism of the simulation and serve as the fixed structural elements of the

system. The relationship of these components is shown in Figure 2-7. The interface

between the simulation control mechanism and model dependent function is provided

via archi tectural components which perform system-level processing

functions. Transaction flows link the system' archi tecture and

the modeling subsystem. All scheduling and manipulation of transactions is handled

by the system architecture through requests made by the modeling subsystem via standard

system macros. The transaction parameters and data are controlled and manipulated

by the modeling subsystem. The common transaction attributes recognized and

communicated between the architecture and modeling subsystem are the transaction ID,

next event function (or branch ID), and the delta time increment for occurrence of the

next transaction event. Thus, processing flow within the simulator is maintained with

three fixed pieces of information which represent a standard control-modeling interface.

The control relationship is shown in Figure 2-8.

The definition of entities within the M? is oriented toward increasing execution

efficiency by limiting the amount of event scheduling which must be performed.

Station links, trip links, vehicles, and trips are designated as simulator elements.

Elements are further defined by type as transactions or system entities. Defined as

transactions, elements are subject to event scheduling each time processing is required.

As system entities, elements are given attribute status and can only be assigned to other

simulator elements; and, therefore, do not require any event scheduling. The conceptual

view allows greater efficiency in simulator execution since usage demands on the event

control mechanism are reduced.

Transactions within the MP are defined as either vehicles, trips, or system service

requests. System service requests are used in scheduling events in the future that are

not directly related to model processing events. This includes such functions as data

input reading, trip arrival recognition, and sampling. Vehicle transactions are used

in the architectural sense to represent requests for simulator control or* model processing

services. These requests may take the form of a vehicle completing a specific event

such as station link travel, passenger embarkation, etc. Regardless of transaction

type, control processing and flow through the simulation system is handled in the same

manner by the control architecture. The distinctions made between the three types

of transactions are totally model dependent.

Simulator elements, such as station links and trip links, are assignable to system

transactions. Any processing performed while an entity is assigned to a transaction is

totally dependent upon the organization of the station link and trip link models. These

models can contain as many internal processing paths and event points as desired,

provided that transaction flow back to the control program is handled according

to the requirements specified above.

2-16

2-17

Figure

2-7.

Model

Processor

Architecture

2-18

Since vehicle and trip transactions are associated with different station link and

trip link entities as a simulation progresses, the system architecture must maintain records

to account for all transactions at all times. Accordingly, transactions must always be a

member of one of three possible lists:

1 . An Available List (AL)

2. The Future Event List (FEL)

3o A Queue List (QL) from which transaction restart is required

At the start of simulation, all of the transactions are allocated to an Available

List. As vehicles arrive, vehicle transactions are initialized to be located at the source

of the vehicle, they are removed from the Available List, and remain while the vehicle

is in the simulated area. As trips arrive trip transactions are removed from the Available

List and are initialized to be located at the ticketing trip link. As a trip leaves the

system (e.g., reaches its destination) its transaction is returned to this available list

for future reuse. Similarly, system service request transactions can be reused during

the simulation

.

2. 2. 1.1 Modeling Entity Control— From an architectural or control program view,

station finks and trip links are considered as entities requiring a basic set of fixed processes.

Both require entry and exit testing and a processing component to provide for transaction

movement within the entity being modeled. As such, within the MP, the station link

and trip link models contain parallel processing components as shown in Figure 2-9.

The actual decision logic and event processing within these components differs for
station links and trip links.

The relationship between the simulation architecture and the station link and
trip link model is shown in the PDL segment hierarchies given in Figures 2-10 and
2 - 11 .

2. 2. 1.1.1 Station Link Event Process - Stations are configured from canonical
station links. A canonical station link (shown in Figure 2-12) contains all

seven possible types of events that can happen to a vehicle in a station
in a fixed order:

1. Tragel the headway zone
2. Travel the main body of the link

3. Undergo the deboarding of passengers
4. Undergo the boarding of passengers
5. Undergo joint deboarding and boarding of passengers

2-19

Processing Components
Assumed for Station

Links and T rip Links

System Service Request for

Architecture Processing

Transaction Path Between
Model Structural Elements

Figure 2-9. DSM Entity Modeling Architecture

2-20

STATION LINK MODEL

SCTL CSTaTIGN LINK MODEL CONTRCL>

SSMQD KSTTATION LINK EVENT PROCESS ING>

SSMOD3 <3EFORE TIME SEGMENT PROCESS ING>

SMBRD <GENER ATE BOARD LIST>

| SMRSEL CSELECT RANDOM POINT ON DIST.>

| SMRN’G CGENERATE UNIFORM RAND. NO.

>

SMD3RD CGENERATE DEEOARD D XFER LISTS>
I

j SMRSEL CSELECT RANDOM POINT ON DIST.>

| SMKNG CGENERATE UNIFORM RAND. NO.

>

SMLTI M < F I N D LAUNCH DELA Y>
S.MDETR <DE TRAIN VEHlCLES>

SSMGDN CNEXT EVENT SELECT IQN>
SSMODA CAFTER TIME SEGMFNT PROCESS ING>

SMENTR CENTRA IN VEHlCLE>
S S PMAC < SC ML DULL STATION LINK PRGMPTS
5UPMAC CSCHEDOLL TRIP LINK FRCMPT>
SMNXST KDETERMINE NEXT STCP>

| SMEVM CEMPTY VEHICLE MANAGEMENT >
i

j SMRSEL CSELECT RANDOM PT. ON D I ST .

>

| SMRNG CGENERATE UN I F . RAND .NO .

>

SM TAEG STRIP ARRIVES AT BOARD QUEUE PROCESSINGS

| SSPMAC CSCHEDULE STATION LINK PROMPTS

SSTEST <FIND NEXT STATION LINK D DO EXIT S ENTRY TESTSS

| SMDIVF CdUILD LIST OF POSSIBLE NEXT SLS ORDERED oY PRE F>

SM D I VS C SEARCH FOR LINK OF A GIVEN TYPES
SMDlVl! CORDER LIST OF LINKS EY OCC/PSEUDO OCCS

. :leav CSTATIGN link LEAVE PROCESSINGS
f

\
SSMQD CSTATIGN LINK EVENT PROCESSINGS

I
SSPMAC CSCHEDLLE STATION LINK PROMPTS

Figure 2-10. Station Link Model Processing Hierarchy

2-21

w)

J)
l/)

TRIP LINK MODEL

£AUCTL <TR IP LINK MODEL CONTRGL>

LMGD
UTEST
ULEA V

< T R I P LINK EVENT PROCESSINO
<F1ND NEXT TRIP LINK & DO EXIT £, ENTRY TLST^>
< TR I P LINK LEAVE PROCESS ING>

SUMGD <TR IP LINK EVENT PROCE3SING>
SOPM AC < SCHEDULE TRIP LINK PRDMPT>

-SMTA3G <TR I P ARRIVES AT bCARDING QUEUE PPcCCESSINO

I SS-PMAC <SCHEDULE STATION LINK PROMPT >

Figure 2-11. Trip Link Model Processing Hierarchy

H — travel the headway zone;

T — travel the main body of the link;

D — undergo the deboarding of passengers;

B — undergo the boarding of passengers;

J — joint deboarding and boarding of passengers

S — store the vehicle on this link;

L — undergo the delay waiting for launch.

Figure 2-12. Station Link Canonical Definition

2-22

6. Being stored

7. Undergo the delay waiting for launch

On any one particular link the user will specify only a subset of these

events to occur on that link. Some examples are:

Model the input ramp just by (1) and (2)

Model a docking lane by (1), (2), (3), and (4)

Model an output queueing lane by (1), (2), and (7)

Model a storage lane by (6)

The vehicle is assumed to move from one event to the next without any
intermediate queueing with the exception of the launch event for which
the vehicle must be at the head of the link. Thus, the ordered sequence of
time periods on a link is as follows:

a. Time on FEL for all events except launch event

b. Time queued waiting to get to head of link for launch

event (if launch event specified on link)

c. Time on FEL for launch event (if specified on link)

d. Time queued waiting to get off link due to congestion/
fai 1 ure/other vehicle ahead.

Most links in a station would not have the launch event; it usually
occurs on the end of an output queue or, if there is none, the end of the

docking lane. Thus in the simplest case vehicles just pass from one event
to the next, do not queue and move onto the next link. In the next most
complex case a vehicle moves from one event to the next, but when it gets
through with all of them it discovers that there is another vehicle ahead
of it still undergoing events. There the subject vehicle then queues
waiting for the other to finish (done with events and not at the head).

To add the next increment of complexity, the vehicle when it gets to the
end could discover that it cannot leave due to congestion, failure of the
exit of the link it is on, or failure of the entrance of the next link it

must go on. There the vehicle also queues (done with events on at the

head of the link). The next increment of complexity comes when the

launch event is at the end of the link. In this case the vehicle may
have to queue before beginning this event to wait to get to the end of
the link (not done with events and not at the head of the link). After
queueing for this reason, it then would go on the FEL for a period of
time associated with the launch event and may then queue again due to

downstream congestion or failure. It is for these reasons associated
with queueing that the selected subset of events from the canonical link
must be in the same order as on the canonical link. The store event
simply queues the vehicle on the link for yet another (a fourth) queueing
reason. The only activity that will take a vehicle out of this state is

a request for an entry from local storage. Thus this event must appear
only on the storage link as defined by SLSTOR and also must be the last
event on the link on which it appears.

2-23

In addition to specifying the events that are to occur on each station link, the

user specifies the connectivity of station links that form the station to be modeled. This

connectivity is defined by giving the follow ; ng four data items for each station link

that is to appear in the modeled station:

1 . List of station links downstream of the link being defined

2. Number of the diverge function (case within code segment SMDIVF)
to be used to determine which link should be used next if there is a

diverge at the end of the link being defined

3. List of the station links upstream of the link being defined

4. Indicator as to whether vehicles are to be dequeued from the upstream

links in FIFO order or in a priority order as defined by the order they

are given in (3) above.

By specifying these four data items and the list of events that are to occur
on each link, the user is given great latitude in the amount of detail that can be

put in the station. A diagram of one possible configuration is given in Figure 2-13

It should be noted that the six diverge functions given in the code segment
SMDIVF are intended to support a baseline configuration of the form shown in

Figure 2-11 and that other configurations may require that additional diverge
functions be added to SMDIVF. See User's Manual for a complete description
of station link processes.

2.2. 1.1.2 Trip Link Event Processes - When a trip enters the station in DSM, it

does so by entering a ticketipg link. This is the first of three trip links it

enters in a fixed order: ticketing link, turnstile link, and boarding link. They
are shown in Figure 2-14. Each of the three links contains an event in which
the trip spends a period of time on the FEL that corresponds to walking to the

process or queue at the end of the link. The walk time on each link is a user

input. Each link also contains a queue. For ticketing and turnstile links,

a trip remains in the queue until it arrives at the head of the link to begin

processing. For the boarding link a trip remains in the queue until it

boards a vehicle. The ticketing and turnstile links also have processing.

2-24

Approach

Link

Bypass

Link

Guideway

Exit

link

ii Q.

E
03

cc

o
Q.

03
c

D
CL03

"O

5|O|<|0_

v- 03
CD CJ

r o

03
c
to— to

03 *-' i_ CDU 3 d u
O Q- 4T o
s £ < £

03
c
to

CD to
4—' s— 03
=3 o O
Q. o

03 u_

00 Q_

2-25

Figure

2-13.

Sample

Configuration

of

Station

Links

o

Q
CC

<
O
CD

CC

=)
H

I

I

cj

2-26

Figure

2-14.

Trip

Link

Sequence

mechanisms, which represent a set of parai lei ticketing/turnstile machines, through

which the trips must pass. For these two links the lead trip on the link spends an amount

of time in the processing mechanism as computed from the form ax/y + b, where x

is the number of passengers in the trip, y is the number of active servers (ticketing

machines/turnstiles) and a and b are user-specified times.

When all servers are busy or failed or the next area is at capacity,

the trip waits in the current area (except in case of trips arriving at

a capacitated ticketing link, which are rejected). See User's Manual

for a complete description of trip link processes. .

2 .2 . 1 . 1 .3 Transaction Dequeueing—As previously mentioned, vehicle and trip

transactions in the simulation are subject to queueing within the modeling subsystem

depending upon whether the next entity or processing event for which they are to be

scheduled is available or can be performed. The MP provides the means by which

queued transactions can be restarted (scheduled for their next event) when conditions

are such that the event upon which they are waiting can now be performed. This is

accomplished by the scheduling of a system transaction which causes the prompting

(interrogation
1

)
of upstream station links or trip links. The scheduling of prompt

transactions results from completion of specific event processes within the simulation

system. Specifically, the scheduling of a prompt transaction occurs each time an

entity exit is processed. Additionally, prompts are scheduled in response

to asynchronous events such as failure recoveries.

2.2.1 .2 Future Events List—The Future Events List (FEL) is a time ordered list of pointers

used to chain transaction ID's for scheduling of events for occurrence in future simulated

time. Time is quantized into discrete, finite units called 'clock units,' with each unit

representing some period of simulated time, e.g., one millisecond. Each pointer in the

clock table begins the list of transaction ID's which require processing during a

simulation interval. The point in real time at which the simulator is currently operating

is given by clock time which provides the number of clock units which have passed

since the start of the simulation experiment.

Every transaction that represents an action to be performed at some future time is

placed into the FEL, at the proper time point. To record when events are to occur,

each transaction has a time word that defines the time at which it is to be processed .

Scheduling of transactions on the FEL is performed by both the architecture control and

modeling subsystems. Each transaction has as a part of its definition a chain word

which is used for inserting it into the FEL. Transactions are inserted into the FEL by

determining the time interval (pointer) within which the event for which is being

scheduled is to occur. The transaction is then chained in time order into the list of

transactions which are to become active in the specified simulation interval. The

organization of the FEL is shown in Figure 2-15.

2-27

Clock

T
able

o

o o o
«- CM

o
CO

o
o*

o
LO

o o o o
co r* co co

cn
c
"5

TJ
<D

_C
o
C-0

o— o
co t—>
v cn

c <u’

COO
C
o
o
<D
co

E

o
_o

o

c
o
+J
03
N

• j

—

cr
03
03
S_o
Cl)

-Q
03

U
o
C_3

LO

I

CNJ

ai
s-
3
CD

2-28

Since the clock table portion of the FEL is of finite length, only a finite number

of time intervals can be represented. Transactions which must be scheduled for a time

interval greater than the time period represented by the clock table are scheduled on the

FEL extension or multiple thread future events list. Entries or quantized intervals in the

multiple thread list represent an interval of time corresponding to an entire clock table

interval. Multiple thread list pointers differ from clock table pointers in that they are

created dynamically as required during the simulation experiment by chaining available

transactions which serve as the FEL pointer for chaining transactions which are scheduled

during that simulation time interval. Transactions placed on the multiple thread list

are chained from the multiple thread transaction without regard to discrete simulation

intervals as maintained in the clock table. The organization of the multiple thread

list is shown in Figure 2-16.

Once the simulation interval encompassed by the clock table has passed, (all

transactions processed and clock updated to last transaction time), the clock table is

updated from the next available multiple thread list pointer.

2.2.1 .3 Event Recognition and Control - The basic control loop in the MP is to deter-

mine the next event to be performed, update the simulation clock, and perform the

event. Since every event is represented by a transaction, the transaction is the basis

for determining the next process to be performed. The control loop in the simulator

consists of the following as shown by PDL segment SANA I N

:

1. Obtain the next most imminent transaction. The next event to be

performed is indicated within the transaction which is first on the FEL.

2. Remove the transaction from the FEL.

3. Update the simulation clock to the time of the transaction. When-
ever the simulation clock is updated, it is updated to the time of

the next most imminent event.

4. Perform the indicated event. The type of event to be performed is

indicated by another item of information associated with the trans-

action. This item is used to determine which architectural processing

component is required and a control transfer is performed.

2-29

MULTIPLE

THREAD

LIST

CHAIN

c
o

"o. "O

= -E 2
5 H I-

2-30

Figure

2-16.

Multiple

Thread

List

Organization

2.3 OUTPUT PROCESSOR

The DSM Output Processor provides the means by which sampling data, written

to the Raw Statistics File during a simulation experiment, can be retrieved and formatted

for station analysis. The Output Processor permits access to and manipulation of the raw

statistics in a convenient and unrestricti ve manner. This is achieved by providing a user

interface which does not require knowledge of how data is formatted, acquired from the

input source or arranged internal to the processor itself.

The processing performed by the Output Processor is directed by service request

commands input by the user. These commands invoke the four basic processes provided

by the OP as follows:

1 . Data storage

2 . Data acquisi tion

3. Data manipulation

4 . Data display

Data request commands provide the means by which desired statistics are specified

for retrieval and the presentation format is chosen. These requests are accumulated until

a read command, wh ich causes actual accumulation and formatting of data, is encountered..

2.3.1 Architecture

Execution of the OP is initiated by invoking a cataloged job control
procedure contained in the procedure library. Upon entry, the OP saves
parm field information required for index file updating and control is

passed to the main OP control routine. The OP then performs initialization
processing. This involves initial reading of the Raw Statistics File to

retrieve required control information and the allocation of internal
storage areas used for data accumulation.

Once initialization is complete, the basic control loop of the
Output Processor is started by reading the first data request command
and creating the first entry in the data request table. If output is

to be generated for the Performance and Summary File, the Index File

is updated as required. Consecutive reading and storing of data

requests is performed until a read command is encountered. This causes
the data acquisition and display process to begin. This involves the

following procedures:

1 . Positionin-g of the Raw Statistics File to the first sampling data

records contained within the time interval specified in the read

command

.

2 . Determining the type of data records required to satisfy stored

requests.M
2-31

MULTIPLE

THREAD

LIST

CHAIN

I

</>

c
o

__ o
.9-^ 2~ Q> C

2-32

Figure

2-16.

Multiple

Thread

List

Organization

Figure 2-17. Output Processor Architecture

2-33

Figure 2-18 illustrates the manner in which bins are referenced within the OP.
The bin number, i, is used to index the bin location pointer. The number in the location

pointer 0)
provides the position in the bin storage area at which the bin is located. By

convention, j=location pointer (i) always indicates the third word that has been allocated

to the bin is that data retrieval by bin can be accomplished. Each line is intially allocated

as five words consisting of four header words plus one unused data word. The initial

number of bins allocated is given by the number of entities (station links and trip links)

used in the simulation experiment as reflected in the Raw Statistics File.

In general, a bin consists of several distinct areas as shown in Figure 2-18:

1. The system header— entries j-2 and j-1.

This area is used exclusively by the bin storage allocation and

maintenance services. It specifies:

a. The total number of words in this bin area,
_

including

those in the system header

b. The identify number of this bin itself.

2. The data header—entries j-j+2 used during the data retrieval

process:

a. The starting index of the data in the bin

b. The ending index of the data in the bin

c. A data identity area used to identify the data

in the bin according to the mnemonic used in

requesting the specific data item.

The unused portion of bin allocation area is set up as a pseudo-bin, with bin

number set to zero to indicate its being unused.

2.3. 1 .2 Command Request Storage - Each data request entered by the user causes the

contents of the request to be filed in a request table used in data retrieval processing.

As part of this filing process, a bin assignment and reallocation is made for internal

storage of the samoling data to be retrieved during request servicing. The amount of

space reallocated to a oarticular bin depends upon the display mode specified in the

request. The amount of space allocated at this point serves only as initial estimate of

storage required. If further space is required during the data retrieval process, it is

obtained dynamically by repositioning bin assignments within the bin

storage area.

In addition to the above, request filing results in the category definition for

the data item selected. This definition is stored with the request for identifying the

required samoling records which must be processed to service the data request. In the

2-34

Bin

Storage

Area

r- CN

A

2-35

Figure

2-18.

Output

Processor

Bin

Referencing

Raw Statistics File, data is stored on a time sample basis according to a category hierarchy.

Data is classified as to which portion of the model it pertains (major category): system,

station link, or trip link.

System-level data requires no subscript or index--each data element is a single

number. Station link or trip link data elements require an entity index since each

element consists of multiple values—one per station link, or trip link.

Further, data are classified as to whether they are status data or historical

data (subcategories). Status data reflect the data of a modeled area at the instant at

which samp I ing took place (e
. g . ,

the number of vehides on link five) . On the other

hand, historical data reflect what events transpired over the interval preceding the

sampling event (beginning after the previous sample and ending at the time of the

current sample). Examples of historical data are the number of vehicles leaving Link

5 exit queue, and the average number of vehicles on Link 5.

The organizarion of data in the Raw Statistics File consists of groups of

unformatted logical records. The first record of a group is a header record. The header

contains the following information:

1 . A code number that indicates the type of group each one is

(major category).

2. A count of the number of logical records (sampling data followers)

in the group, excluding the header. If the group consists of the

header only, this count is zero.

3. The value of the simulation clock at the time the record group

was v/ritten. (This value is non-decreasing along the file.)

The remaining logical records of the group, if any, have a format unique to

that type of group, which is indicated by the header. This header-follower organization

has several distinct advantages:

1. Widely varying kinds of data may be interspersed on the tape.

2. Within a given simulator clock value, the order of information

is unimportant.

3. Groups of records may be placed upon the tape or omitted from it,

at the sole discretion of the program which is writing the tape

(i.e., the Model Processor).

4. Information not needed on a given pass of the tape can be quickly

skipped, simply by skipping the number of followers specified by the

header.

2-36

The relationship between the request table and data storage bins resulting from

the request filing process is shown in Figure 2-19.

2.3. 1 ,3 Establ i shing Request/Record Cor re I at ion - Once the data acquisi tion orocess

is started in response to a read command, a matching process which identifies v/hi ch data

records can be used to satisfy filed requests is performed. The matching process is

started during data acquisition for the first records groups contained within the desired

accumulation interval. Subsequent occurrences of record groups need not be matched

once the matching process has been performed.

Prior to reading the header for the first record group in the requested interval,

a match table is built which provides for each major category (record group), M, the

following indicator:

0

—

Record groups of type M are to be ignored (if found on the tape,

they will be skipped).

1-

-Groups of type M contain data necessary for proper operation of

the OP and are always to be read (examples are conversion tables,

* system dimensions, etc.).

-1--Groups of type M might be required, depending upon their

existence on the tape and upon a request for data contained within

them

.

As readinq beqins, if the major category indicator for the record group is -1,

the match process is performed (as shown in the example given in Figures 2-20
and 2-21).

As shov/n in Figure 2-20, record type M has the main category 1 1 and a list

of subcategories given by column
j
of the subcategory mnemonic table. This list includes

subcategories 1

0
' and 1

7 In looking for matches, the request table entries containing

the major and subcategory mnemonic designators are IMAIN and ISUB compared with
1

ct
1 and the subcategory list for all i. Lines s and t of the request table matched both

1 0 1 and either 1

y ', or
1

v>
1

. Consequently:

1. The subcategory indicator of the request table was set to indicate

the index of th^ matching subcategory. That is, since line s

matched the 1 subcategory (' 7 '), the indicator was set to 1 .

Likewise, the indicator for request (t) was set to k.

2. A list of requests that can be satisfied by record type M (namely,

requests s and t) was created by forming a chain:

2-37

Figure 2-19. Request Filing/Bin Storage Relationship

2-38

Request

T
able

2-39

Figure

2-20.

Data

Matching

Process

Request Table

Record
Group Type MATTAB

Maj Sub

Figure 2-21. Data Matching Results

2-40

a. The entry in the major category indicator table which was

-1 prior to the matching orocess, was set to "t", one of the

request table lines satisfied by record type M.

Item next request for entry (t) in the request roble g-ves a second

line (s) satisfied by record type M,

Item next request for entry (s)=0 indicates that no other lines in

the table are satisfied by record type M.

As a result of these actions, note the major category indicator that indicates

those lines of the request table that are satisfied by records of type M, via the chain.

Also, the subcategory entry of the request table indicates the exact subcategory of data

that was requested, by number. Consequently, the main and subcategory mnemonic

tables need not be referenced hereafter for records of this type.

The subcategory indicator now contained in the request table entries serves as

the position designator of the required item within'the sampled data record.

b.

c.

2-41/2-42

SECTION 3. GLOBAL VARIABLE DICTIONARY

The following table (Table 3-1) defines variables that are global

within the processors. Those that begin with SCN are internal to the

input processor. Those that begin with SCI are input by the user through
the input processor to the model processor. Those that begin with SCM

are internal to the model processor. The remainder are used in the

output processor.

o SCAMSG -- MESSAGE COMMONS

o SCICFG -- STATION CONFIGURATION INPUT

o SCIFEL -- FUTURE EVENT TIMING INPUT DATA

o SCIMAX — RUN-TIME DATA

o SCISL — STATION LINK INPUT DATA

o SCISYS — SYSTEM INPUT DATA

o SCITL — TRIP LINK INPUT DATA

o SCMFEL — FUTURE EVENT TIMING MAINTAINED BY MODEL PROCESSOR

o SCMFS — FEL STATISTICS

o SCMSL — STATION LINK DATA MAINTAINED BY MODEL PROC.

o SCMSYS — SYSTEM DATA MAINTAINED BY MODEL PROCESSOR

o SCMT — TRIP DATA MAINTAINED BY MODEL PROCESSOR

o SCMTL -- TRIP LINK DATA MAINTAINED BY MODEL PROC.

o SCMV -- VEHICLE DATA MAINTAINED BY MODEL PROCESSOR

o SCMXTN — TRANSACTION HEADER DATA MAINTAINED BY MODEL PROCESSOR

o SCNMAX — IP RUN-TIME MAXIMA

o SCNSYS — SIMULATION SYSTEM DATA

3-1

o SCNTDM — TRIP DEMAND GENERATION DATA
o SCNVDM — VEHICLE DEMAND GENERATION DATA

o SCZ -- MODEL STATISTICS

o SMAXSIZE -- COMPILE TIME MAXIMA

o SODCLS -- COMMON AREAS UNIQUE TO SOP

o SODEFS -- COMMON AREAS IN SODCLS AND ZODCLS WITH FULL
DIMENSIONS

o ZCAMSG — OP ERROR MESSAGE COMMON

o ZODCLS -- COMMON AREAS COMMON TO ALL OP

o ZSYSMAX -- OP COMPILE TIME MAXIMA

The format of the definitions is as follows:

Var Name Dim Description

A B/C D

(E, F, G)

(H)

where

A is the official name under which the data is used

B is the dimension of the variable; dash (-) implies it is a

seal ar

C is the type of variable:

LI -- Logical
,

1 byte

12 -- Integer, 2 bytes

14 -- Integer, 4 bytes

R4 -- Real
,

4 bytes

D is the definition of the variable and the values it can assume

E is the value it is initialized to by IP

3-2

F is the lowest legal value (checked by IP)

G is the highest legal value (checked by IP)

H is other checks, initializations, time conversions, and miscellaneous
notes.

3-3

Table 3-1. Global Variables — SCAMSG (Page 1 of 58)

s a V;So: Erc^OS ME SS AGE DATA

VAR NAME D i M DESCRIPT 1 ON

< A 5G 3/12 MUM3ET OF MESSAGES ISSUED DURING A RUN* BY CLASS:
1 - INFORMATION
2 = W AkN I NG
3 = SEVERE

N> SGS -/ I 2 TOTAL NUMBER Ur MESSAGES OF ANY CLASS
ISSUED DURING A RUN

>, SGC < MMSGS
/I 2

MESSAGE NUMBERS ISSUED DURING RUN

MuGCN .O'-MSGS
/ I 2

NUMBER OF REMAINING MESSAGES OF THIS TYPE
ALLOWED PRIOR TO TERMINATION

T Cl r< >1 -/Li INDICATOR TO SIGNAL TERMINATION DUE TO EXCESSIVE
MESSAGES

i*"i
~ o -/L 1 ERROR PROCESSING IN PROGRESS INDICATOR TO HALT

RECURSIVE ERROR PROCESSING

V, ; o i D —/L 1 ID OF PROCESSOR BEING EXECUTED (I = INPUT PROCESSOR
2 — MODEL l-'kOCcSSuk)

3-4

Table 3-1. Global Variables SCICFG (Page 2 of 58)

NV.M.-I SlICFG category: input processor station configura-
tion DATA

VARIABLE DIM TYPE DESCRIPTION

vnote

:

STATION LINKS ARE IMPLICITLY NUMBERED BY TmE ORDER IN a’H IC h
THEY ARE DESCRIBED IN INPUT* EXAMPLE: IF TnE FIRST LINK
DESCRIBED IN SLCFIG IS THE UPSTREAM LINK* THEN THE
UPSTREAM LINK IS ALSO KNOWN AS STATION LINK I.

£ LC FIG 13, i*2 DESCRIPTORS FOR EACH LINK IN STATION
KMSL

***NCT£: FOR EACH LINK IN THE STATION, TH E TABLE
SLCFIG CONTAINS 13 DESCRIPTORS FOR ENTERING
THE STaTICN L INK'S ATTRIBUTES. CGLUMUN 1

IS SLCFIG(i) AND COLUMN 13 IS SLCFIG(13).
DEFINITIONS FOR EACH COLUMN ARE PROVIDED:

CUL I - STATICN LINK TYPE USED TO GROUP
LINKS FUR REPORTING PURPOSES, FOR
DIVERGE FUNCTIONS, AND TO IMPLICITLY
CDNF I GUR E THE STATION (Dtz TERM INE THE
UPSTREAM AND DOWNSTREAM LINKS FOR EACH
L i NX.) :

1 = IR - INPUT RAMP
2 = IQ = INPUT CUEUE
3 = D

4 = GO =

5 = OK -

6 = S =

7 = I S =

3 = SI -

9 = Di> =

10 = SO -

1 1 - UL =•

12 = U L -
13 = DL -

14 =. MIB-
15 := M 1 A—

16 = MOB-
17 = MOA-
(1.1,17)

DOCK (DEB CARD AND/OR BOARD)
(DEBGARD, BOARD, AND JOINT
EVENTS 3,4,5 CAN APPEAR ONLY
ON THIS LINK TYPE)

OUTPUT QUEUE
OUTPUT RAMP
STORAGE
INPUT -TO -STORAGE
STORAGE—TO— I N^UT
DOCK -TO- STORAGE
ST OR AGE—TO—OUT PU T

UPST REA'iA. I NK (APPROACH LINK)
BYPA SS L INK
DOWNSTREAM LINK
MODAL INPUT BEFORE PROCESSING
MODAL INPUT AFTER DRGCESSING
MODAL OUTPUT BEFORE PROCESSING
MODAL OUTPUT AFTER PROCESSING

3-5

Table 3-1. Global Variables SCICFG (Page 3 of 58)

CCi_ 2 = rOTAL non-degraded TRAVEL TIME UN
THE STATION LINK. - HEADWAY EVENT TRAVtL
TIME + TRAVEL EVENT TRAVEL TIME. INPUT
IN SECONDS* (optional; REQUIRED IF
CUL 3 AND SLVEL ARE NOT USED)

COL 3 = STATION LINK. LENGTH IN FEET (OPTIONAL
REQUIRED WITH SLVEL IF COL 2 IS
NOT USED)

COL 4 - STATION LINK CAPACITY (NUMBER OF
VEHICLES) MUST SE GREATER THAN OR EQUAL TO
THE MAXI MUM TRAIN LENGTH. (REQUIRED)
(0 * P MX TR Li 1)

5-NCTE COL 5-9. THE EVENTS ON A LINK MUST
b£ IN THE ORDER HE ADW A Y/ TRAVEL /DEB OARD /3GA RD

/

JO IN T /ST ORE/LAUNCH . THE STORE AND LAUNCH EVENTS
MUST BE THE LAST EVENTS ON THE LINK WHEN USED.
THE POINT EVENT CANNOT 5E USED WITH THE DEBOARD
OR SOARD EVENTS IN THE SAME STATION. THE STORE
EVENT MUST BE PRECEEDED BY THE HEADWAY OR TRAVEL
EVENTS ON THE LINK ON WHICH IT APPEARS. THci

FOLLOWING NUMBERS SIGNIFY EVENTS:
1 = HEADWAY
2 - TRAVEL
3 = D EBOARD
4 - BOARD
5 - JOINT (DEBOARD AND BOARD)
6 = STORE
7 - LAUNCH

COL 5 1ST E VE NT ON LINK

COL 6 - 2ND EVENT ON LINK
ZERO

COL 7 - 3RD EVENT ON LINK
Z ERO)

COL S - 4TH EVENT ON LINK
ZERO)

(OPTIONAL; DEFAULT

(optional; default

(OPTIONAL; DEFAULT

COL H = 5TH EVENT ON LINK (OPTIONAL; DEFAULT
ZERO)

COL 10 - DIVERGE FUNCTION NUMBER ASSIGNED
TO THE LINK WHEN IT HAS TWO OR MORE
DOWNSTREAM LINKS MUST RANGE FROM 1 THROUGH
SIX WHERE USE OF THESE FUNCTIONS IS

3-6

Table 3-1. Global Variables — SCICFG (Page 4 of 58)

TYPIFIED A 5 F OSLO WS

:

1 = END OF UL
2 = END OF 1R , MIS, £1

3 = END GF D
A = END OF S

i> - ORDER BY OCCUPANCY
6 = ORDER BY PS EUDO-OCCUPANCY

DEFAULT IS ZERO aHEN THERE IS ONLY ONE
DOWNSTREAM LINK,
(0,1 ,6)

WHEN SLPF = II

COL 11 = UPSTREAM LINK ORDERING OPTION
USED WHEN UPSTREAM VtinICLES ARE DEQUEUED IN
PR 10KI TY ORDER ,

ORDER Or UPSTREAM LINKS

OPT R I RST SECOND THIRD

1

2

3
4

5

6

GU i OEW A
S TOR AGE
MUD AL
GUI DE W A

Y

S TOR AGE
= MODAL

(OPT I ONAL

I

(1,1,5)

S TORAGE
GUIDEWAY
GUIDE WAY
M ODAL
M ODAL
S TORAGE

DE F AL-’L T 1)

M QDAL
M OD AL

S T O RA GE
STORAGE
GUI DE WA Y

GUIDE WA V

COL 12 = HEADWAY TIME PER TRAIN IN SECONDS
USED TO COMPUTE TIME TO TRAVEL THE HEADWAY
ZONE. TOTAL HEADWAY ZONE TRAVEL TIME =

(COL 12) -A (TRAIN LENGTH) + (COL 13) c

(0 , 0 ,)

COL 13 = HEADWAY TIME D ER VEHICLE IN SECONDS
USED TO COMPUTE TIME TO TRAVEL THE HEADWAY
ZONni. TOTAL HEADWAY ZONE TRAVEL TIME =

(COL x 2) * (TRAIN LENGTH) + (COL 13).
(0 , 0 ,)

SLVEL - 1*2 A VEKAGE L INK VELOCI TY (FT /SEC

)

(OPTIONAL; HOWEVER REQUIRED
WITH COL 2 IF COL 3 IS NOT USED)

3-7

'

Table 3-1. Global Variables — SCIFEL (Page 5 of 58)

CI.= £i_: FUTURE EVENT LIST DATA

AR NAME DIM DESCRIPTION

L3TP

^.Sr/A L

—/ 1 4 NUMBER OF CLOCK UNITS PER MINUTE
t o O » *)

-/1 4 MAXIMUM NUMBER OF ENTRIES ALLOWED INI ONE
CLOCK TABLE ENTRY
C 1G00 • »

)

-/I*v SPACING BETWEEN CLOCK TABLE ENTRIES EXPRESSED IN
CLOCK UNITS * 10 UNITS
(100 ,,)

3-8

Table 3-1. Global Variables -- SCIMAX (Page 6 of 58)

RUN-TlMc :a ax ima:
TkE FGLLOWii'G VARIABLE NAMES DEFINE THE ACTUAL NUMBER CE ENTITIES
USED IN a oIVEN PUN. ThcSE ARE READ IN AT RUN-TIME AND MUST BE
LLSa THAN OR EGUAL TO Their COMPILE-TiME maxima counterparts.

VAK NAME DIM/ TYPE DESCRIPTION

KNSL

ANY

k »\ r

K.vRT

VP

K NS VP

V \‘\t 1 1
>N ,\ tV i

•

.< Nr. V 0

knsle

A NSLL)

—/ 1 2 ACTUAL NUMBER OF STATION lINKS
(1*1* KMSL)

—/

I

2 RUN TIME LIMIT ON THE ACTUAL NUMBER OF
SIMULTANEOUS VEHICLES IN THE SIMULATION
(KM V , 1 • KM V

)

—/ 1 2 RUN TIME LIMIT ON THE ACTUAL NUMBER OF
SIMULTANEOUS TRIPS IN THE SIMULATION
(KMT* 1 * K M T

)

-/1 2 ACTUAL NUMBER OF ROUTES
(1*1* KMR

)

—/ I 2 ACTUAL NUMBER OF ENTRIES IN
SCHEDULED ROUTE LIST (PVRLST)
(1*1* KMRT

)

—/ I 2 ACTUAL NUMBER OF ENTRIES IN USER'S
PRIORITY ORDERED LIST OF
WHERE TO PUT EMPTY VEHICLES 4 PV EPF)
(1 , 1 , KME VP >

-/I2 ACTUAL NUMBER Or ENTRIES IN USck*S
OKDEkcD l. I s T of WHERE TO
SEARCH FOR EMPTIES (FVSPR)
43*1* RMS VP

)

—/ 1 2 ACTUAL NUMBER OF ENTRIES IN NETWORK MERGE
Cc LAY DISTRIBUTION CPNMCDT>-
(1,1* KM NMD

)

—/ 1 2 ACTUAL NUMBER OF ENTRIES IN
EMPTY VEHICLE DELAY DISTRIBUTION (° E V DD T

)

(1,1, KMEVD)

— / 1

2

ACTUAL NUMBER OF ENTRIES IN EVENT LIST (SLEVL)
(

2

*

r

* KMSLE)

— / 1 2 ACTUAL NUMBER OF ENTRIES IN
DOWNSTREAM STATION LINK LIST (SLDSL

)

(2,2, KMSLD)

3-9

ANbLj

Table 3-1. Global Variables — SCIMAX (Page 7 of 58)

ACTUAL NUMBLY OP ENTAILS IN UPSTRLAM STATION L I .'vK

LIST (SLUSL)
t L * C * KMSLU)

3-10

Table 3-1. Global Variables -- SCISL (Page 8 of 58)

ol ; station link data - INPUT

T NAME T DcSCK I PT ION

;-vNUTl: station links are implicitly ORDERED BY the order in which
THe I R ATTRIBUTES ARE SPECIFIED IN INPUT. EXAMPLE: IF

THc FIRST LINK DESCRIBED IS KNOWN AS THE UPSTREAM LINK
THLN THAT LINK IS STATION LINK. SL . 1 ANl> THAT LINK'S
ATTRIBUTES ARE SLTYPL(l), SLEVP(l). SLUSPl I) » ETC.

S lC Ap KMSL/I2 STATION LINK CAPACITY
(1 .pmxtkl.

1

(NUMBER OF

SLT YPE KMSL/TL STATION LINK TYPE USED TO GROUP LINKS FOR
REPORTING PURPOSES AND FOR DIVERGE FUNCTIONS
— S LIT YPE- -ME AN ING-

1 IR IN PUT RAMP
2 ICi INPUT OUEUE
3 D DOCK (DEBOARD AND/OR BOARD)

(DEB CARD. BOARD, AND JOINT EVENT
3,4,5 CAN APPEAR ONLY ON THI

LI NK TYPE

)

4 CO OUTPUT QUEUE
5 OR OUTPUT RAMP
6 S STORAGE
f I S I NPUT-TO-STORAGE
8 SI STORAGE-TO- I N°UT

DS DO ck-t o-stlre
I 0 SO ST OR AG E-T O-OUT PU T

i 1 Uu UPSTREAM LINK (APPROACH LINK)
i 2 SL uYPASS LINK
i 3 DL DOWNSTREAM LINK
1 4 M 13 MODAL INPUT BEFORE PROCESSING
1 3 M I A MODAL INPUT AFTER PROCESSING
1 6 MOB MODAL OUTPUT BEFORE PROCESSING
1 7 MOA MODAL OUTPUT AFTER PROCESS ING

(1.1*17)

SlE/L <MSLE/I2 STATION LINK EVENT LIST A CONCATENATED LIST
OF SU SL 1 ST S • EACH SUbLIST LISTS cVENTS TO OCCUR
ON THE LINK AND ENDS IN ZERO. SLEVH(SL) POINTS
TO THE START OF THE SUB LI ST FOT ThE STATION LINK.
THE EVENTS IN A SUaLlST MUST BE IN
THE ORDER I /2/3 /A /5 /B /7 /0 , WHERE:

1 = HEADWAY
2 = TRAVEL
3 = DE3DARD
4 - BOARD
5 = JOINT (DEBOARD AND BOARD)
6 = STORE

3-11

Table 3-1. Global Variables -- SCISL (Page 9 of 58)
i

|

7 - LAUNCH
0 = END OF LIST DELIMITER

THE STORE AND LAUNCH EVENTS MUST EE THE
last ngm-zero events on their subli sts.
THE JOINT EVENT CANNOT BE USED
WITH THE DE50ARD OR BOARD EVENTS IN THE SAME
STATION. THE STORE EVENT MUST BE PRECEEDED 8 Y THE
HEADWAY OR TRAVEL EVENTS ON THE LINK ON
WHICH II APPEARS.
(0 , ,)

(SLEVL (SlEVP(I) -1) = C * I =2 * KNSL}
C SLEVL (SLE VP(1.) J-.-0 *1=1* KNSL)

(SLEVL (KMSLE) -0

)

SLLv^ KM SL /IE POINTER TO STARTING ENTRY IN STATION LINK
EVENT LIST (SLEVl) FOR EACH STATION LINK
< 1 * .)

SLUol KMSLU/I2 UPSTREAM STATION LINK LIST A CONCATENATED
LIST OF SUBLISTS. EACH SUhLIST
LISTS THE UPSTREAM STATION LINKS THAT
FEED INTO THE 5L AND ENDS IN ZERO. SLUSP(Sl)
POINTS TO THE START OF THE SUdLIST FOR THE
STATION LINK. WHEN AN UPSTREAM LINK IS A

VEHICLE SOURCE. THE FOLLOWING VALUES ARE
INPUT :

-CODE- -MEANING—
— 1 SOURCE I IS THE GUIDE .vAY

-2 5GJRCE 2 IS THE MODAL ENTRANCE 3E.-0RE
PROCESS 1 NO

-3 SOURCE 3 IS THE MODAL ENTRANCE AFTER
PRO CE USING

AS A MINIMUM. THE GUIDE WAY SOURCE MUST BE USED.
(0,-3.)
(SLU5L(SLUSP(I) -I) — 0 , I -2 .KNSL

)

(SLUSL (SLUSP(I))-i=0 ,1=1. KNSL)
i SlUSL (KMSL'J) = 0)

Sl'JoP KMSL/I2 POINTER TO STARTING ENTRY IN THE UPSTREAM STATION
LINK LIST (SLUSL) FOR EACH STATION LINK
(1 . ,)

\

SLOcL KMSLD/12 DOWNSTREAM STATION LINK LIST A CONCATENATED
LIST OF SOOlISTS. EACH SUBLIST
LISTS THE DOWNSTREAM SL *S THAT LEAVE THE
STATION LINKS BEING DESCRIBED AND ENDS IN

ZERO. SLDSP(SL) POINTS TO THE SUBLIST FOR
THE STATION LINK. WHEN THE DOWNSTREAM LINK
IS A VEHICLE SINK, THE FOLLOWING VALUES ARE
USE D I

3-12

Table 3-1 Global Variables -- SCISL (Page 10 of 58)

slo

i

vc

SLPr

S L A V A L

SLPEN

T

-CODE- -NIEAN1NG-
-1 SINK 1 IS THE GUIDEWAY

SINK 2 IS THE MODAL OUTPUT BEFORE
PROCESS INS

-3 SINK 3 IS THE MODAL OUTPUT AFTER
PROCESS INC

AS A MINIMUM THE GUIDEWAY SINK MUST BE USED

.

(0,-3*)
tSLDSL (SLDSP(I

) — 1 >=0 *I=2»KNSL>
(SLDSi_(SLDSP(I))-.-0 , 1= 1 ,KNSL)

(SLDSL(KMSLD) =0

)

KMSL/I 2 POINTER TO STARTING ENTRY IN THE DOWNSTREAM
STATION LINK LIST (SLDSL) FOR EACH STATION
LINK.
(1 , *)

KMSL/I

2

DIVERGE FUNCTION NUMBER ASSIGNED TO A

WITH TWO UR MORE DOWNSTREAM LINKS.
RANGE i~ROM I THROUGH 6 WHERE USE OF
FUNCTIONS IS TYPIFIED AS FOLLOWS:

1 = END OF UL
2 - END Or IR, Mlb* SI
3 = END OF D
4 = END OF S

5 = ORDER 6 Y OCCUPANCY
6 = ORDER BY PSEUDO-OCCUPANCY

ZERO IS USED WHcN THERE IS ONLY ONE

LINK
values
THE SE

DOWNS TR LAM
LINK.
(1»1»G)

KMSL/I2 PRIORI TY/F 1 F G INDICATOR USED TO SPECIFY THE
ORDER IN WHICH LUEUED UPSTREAM VEHICLES
ARE DEQUEUED,
1 -~->HK 10 R I T Y (BASED ON THE ORDER IN WHICH

UPSTREAM STATION LINKS ARE LISTED IN
SL'JSL)

2 = -->FlFG (BASED ON THE ORDER IN WHICH UPSTREAM
VEHICLES BECOME QUEUED)

(1 , i » 2)

KMSL/L1 INDICATES WHETHER SL IS AVAILABLE (ENABLED)
IN THE MODEL
T r -=>AVA1 LABLE
F-=->NOT AVAILABLE
(.TRUE . * ,

)

KM SL/R4 PENALTY FACTOR TO BE MULTIPLIED BY TRAVEL EVENT
TIME ON THE SL TO DEGRADE THE SL
t 1 *0.)

3-13

Table 3-1. Global Variables — SCISL (Page 11 of 58)

bLTT I i»1 KMSL/I4 TOTAL NON-DtGRAuED TRAVEL TIME ON THE SL =

HEADWAY EVENT TRAVEL TIME + TRAVEL EvENT TRAVEL
TIME,
IT IS INPUT BY THE USER IN SECONDS AND
CONVERTED TO CLOCK UNITS 3Y THE INPUT
PkOCE SSOR

.

€0,0* >

5LHTA KMSL/K HEADWAY TIME PER VEHICLE USED TO COMPUTE
TIME TO TRAVEL THE HEADWAY ZONE,
TOTAL HEADWAY ZONE TRAVEL TIME =

SL H T A A (TRAIN LENGTH) + SLHT9

,

IT IS INPUT 3 Y THE USER IN SECONDS AND
CONVERTED TO CLOCK UNITS 3Y THE INPUT
PROCE SSOR

.

(0.0.)

S 4 hi lb KMSL/I4 CONSTANT TERM USED TO COMPUTE TIME TO
TRAVEL THE HEADWAY ZG NE (SEE SLHT'A) ,

17 IS INPUT BY THE USER IN SECONDS AND
CONVERTED TO CLOCK UNITS BY THE INPUT
PROCESSOR

.

(0*0.)

3-14

Table 3-1. Global Variables — SCISYS (Page 12 of 58)

SCIxYUi SYSTEM DATA INPUT

VAk NAME DIN* DESCRIPTION

POLDER -/ID THE SERVICE POLICY IN EFFECT:
1 ==->DE MAMD RESPONSIVE SINGLE PARTY
2 — — —> D E MA ND RESPONSIVE MULTIPaRTY
3—— = > SCHEDULED
(i * 1 »)

P V- PAC

PRXSLV

-/IS WHEN POLSER = 51
VEHICLE DISPATCH SPACING ALGORITHM TO BE USED
FOR SPACING VEHICLES THAT WILL eE READY TO LEAVE
the docking a a c a :

!=--> MIDWAY BETWEEN THE TIME THE PREVIOUS
VEHICLE ON THE SAME ROUTE DID LEAVE AND THE
TIME AT WHICH THE FOLLOWING VEHICLE UN
THE ROUTE SHOULD LEAVE IF IT LEAVES LN
SCHEDULE

.

2===> FIXED ROUTE DEPARTURE TIME

(1 * 1 * 2)

mR/I WHEN POLSER =3 AND
when pvspac-i

:

the time at which the vehicle
WHICH IS NOW BEING SCHEDULED (ON THIS
ROUTE) SHOULD LEAVE THE DOCK.

WHEN PCLSER-3 AND
WHEN PVSPAC=2:

THE TIME THE LAST VEHICLE ON
THE ROUTE WAS SCHEDULED TO LEAVE THE
DOCK. (INTERNAL PROGRAM ALIAS IS PLSCHT.)

WHEN THl SIMULATION BEGINS THIS IS THE TIME THAT
THE FIRST VEHICLE LLAVlNG THE DOCK SHOULD LLA VE

*

I r IT HAS A VALUE Or ZERO, THE rTRST VEHICLE WILL,
BY DEFINITION LEAVE WHEN IT CAN AND WILL BE ON TIME.
IF IT HAS A NON-ZERO VALUE, THE
USER WILL HAVE DETERMINED WHEN THE FIRST VEHICLE
SHOULD LEAVE THL DOCK. THE FIRST VEHICLE COULD
SUBSEQUENTLY 3E BEHIND UR ON TIME EASED ON THIS
U dE k. I NPU7 .

IT IS INPUT BY THc USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.
(0 , ,)

HLST'LV KMR/I4 WHEN PGLSER-3 AND
WHEN PVSPAC-i

:

THE TIME AT WHICH THE PROCEED ING VEHICLE
ON THIS ROUTE WAS SCHEDULED TO LEAVE THE COCK.

3-15

Table 3-1. Global Variables — SCISYS (Page 13 of 58)

initialized BY THE INPUT ^ROCcSSOk to:
PlSTLV (I) -PNXSL V(I)-PFnEH'A'(i) , 1=1 * K MR

IN CLOCK OMITS.

PR I BMW kmr/i A ahem pqlslr = 3 :

DESIRED HEADWAY BETWEEN VEHICLES ON THE SAME ROUTE
IT IS INPUT 3 Y THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.
i 0 * 0 »)

P v k LS 7 K MR 1/12 WHEN POLSER = 31

ROUTES* STATION LIST CONCATENATED LIST
OF SUBLISTS. EACH SUSLIST LISTS
THE STATIONS ON THE ROUTE AND E ND A IN ZERO.
PVRPT R(ROUTE) POINTS TO THE START OF THE SUBLIST
FOR THE ROUTE ^ USED TO MATCH TRIPS TD VEHICLE
ROUTES WHEN THE STATION ROUTE ASSIGNMENT TABLE
(PRASGN) HAS NOI BEEN INPUT BY THE USER.
(0 * *)

(PVRLST (PVR PTR (I) -I > = 0, 1 = 2* KMK }

t PVRLST (PVP PTR 4I))-i = 0* I = 1 * K MR)

(PVRLST (KMRT) =0

)

13 V:-. PTH Kf'R/I2 WHEN POLSER = 3:
POINTER TO STARTING ENTRY (HOME STATION)
FOR EACH ROUTE IN THE ROUTE'S STATION LIST
(P V RL ST) .

(u * »)

PR A SGI" RMS/ 12 WHEN POLSER = 3 :

STATION ROUTE ASSIGNMENT TABLE USED 70 D E T ER M I NE
DESTINATION COMPATIBILITY OF TRIPS AND VEHICLES.
P RASGN (I) = R OUT E NUMBER SATISFYING TRIPS

GO I NC FR CM S TS IM TO ST AT 10 N I

(0 * C , KN R)

PNMDDP KMNMD NETWORK MERGE DELAY D I STR IB UT 1 I ON

:

/ K A CUMULATIVE PRGBAB ILI1Y DISTRIBUTION SUCH
that:
PNMDDPl I) = PRD9AB IL ITY(DELAY DUE TO

HAVING TO ARRANGE MERGES
IN THE REST OF THE NETWORK)
<= PNM DDT (I)

(G , 0,)

(0 =< PNMCDP(I) =< PNMDDPd + 1) =< 1 .0*1=1 *K NN MD — 1)

(INPUT AS FREC'cDI ST »D CONVERTED BY IP TO CUM*DIST)

P IvM Jj’f KMNMD NETWORK MERGE DELAY DISTRIBUTION:
/ I A PNM DDT (1) = DEL AY TIME

IT IS INPUT BY THE USER IN SECONDS AND CONVERTED

3-16

Table 3-1. Global Variables — SCISYS (Page 14 of 58)

TO CLOCK UMTS bY THE INPUT PROCESSOR,
(0,0.)

KV.c\/D

/R4
EMPTY VEHICLE DELAY DISTRIBUTION:

CUMULATIVE PROBABILITY FUNCTION SUCH THAT:
PEVCDPf I)=PR03A3 1L 1T'Y(DELAY IN HAVING

AN EMPTY VEHICLE COME TO
SERVICE THE TRIP) <=
PE VOLT (I)

(0,0,)

(0 =< PEVDDP(I) =•< PE VD DP (14 1) =< 1 .0 .1 =1 .K NEVD- 1

)

(INPUT AS FREG.DIST.D CONVERTED BY IP TO CUM.DIST)

PEVDOT K Mi VD empty vehicle delay distribution:
/I 4 PEVDDK I 5-DELAY TIME

IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLUCK UNITS BY THE INPUT PROCESSOR.

(0 , C ,)

P'.-'ic ! H “ / I 2 WHEN POLSER — 3

Ok WHEN FOLSE R — 2

:

METHOD TO DETERMINE COMPATIBILITY BETWEEN TRIPS
AND vehicles:

0 == = > PROS AS I L 1 T Y OF COMPATIBILITY
!== = > TABLE' OF STATIONS ON EACH ROUTE (USING

PRASGN IF SPECIFIED OTHERWISE USING PVftLST)
(0*0, i)

rl C ,^i'v:PO £.'/K4 WHEN POLSEK = 3 AND PCME1H=0
OR WHEN P0LSER=2:

CUMULATIVE PROBABILITY FUNCTION SUCH THAT
PCOMPDC 1) -PROBAE I LI TY OF A COMPATIBLE VEHICLE
PCGMPLT 2) -1

(C * 0

,

1)

(0 =<. PCO MP

D

(1) =< PC QM PD (2) =< 1,0)
(INPUT AS FREG.DIST.& CONVERTED BY IP TO CUM.DIST)

PXFERi —

/

l 1 WHEN PC L S£ R =3 OR
WHEN POLSER — 2

:

INDICATES WHETHER OR NOT TRANSFERS ARE TO BE
allowed:

F —>NC TRANSFERS ARE TO BE CONSIDERED
T -= = > T R ANSF ER S MAY OCCUR AS DEFINED BY

THE TRANSFER DISTRIBUTION (P XF ER D) .

(F , ,) *

PXFdRO 2/R4 WHEN POLSEk-3 OR WHEN POLSER = 2
AND WHEN PXFERI = T :

CUMULATIVE PROBABILITY FUNCTION WHERE:
PXFERD (I)=PRGBAUILI TY Or A TRIP HAVING TO

3-17

Table 3-1. Global Variables -- SCISYS (Page 15 of 58)

PN — i-D Li

P VEh.R

PVSPR

.'L I S T

SI S 1M

DfclB CARD AT STS1M TO TRANSFER
TO ANOTHER VEHICLE

PXFERL (2)-l
CG ,0* I >

(0 -< PXFEROd) =< PXFERD(2) =< 1.0)
(INPUT AS FREQ. CIST. G CONVERTED BY IP TO CUfi.DIST)

2/R4 CUMULATIVE PR 03 A3 I L 1 T Y FUNCTION SUCH THAT
PNEEDLX 1 IMPROBABILITY THAT THE EMPTY

VEHICLE BEING CONSIDERED
WILL EE NEEDED AT ANOTHER
STATION

PNEEDD (2)-

1

(0 » C * I.)

(0 -< PNEE D D (1) = < PN EE CD (2) =< 1.0)
(INPUT AS FREQ. LI ST. G CONVERTED BY IP TO CUM.OIST)

K ME VP INDICATION AS TO THE EMPTY VEHICLE MANAGEMENT METHOD
/ I 2 TO BE USED

U--->AT TEMPT TO SEND EMPTY VEHICLES TO
LOCAL STORAGE

!--=•=•>SEND ALL EMPTY VEHICLES OUT OF THE
STATION

(0 , 0 , 1)

KttSVP WHEN PGLSER - 1 OR 21

/ 1 2 ORDERED LIST UF WHERE TG SEARCH FOR AN EMPTY
VEHICLE 1

P VS P R (1) — FIRST PLACE TO LOOK
P VSPR (2)- SECOND PLACE TU LOOK

PVSPR (KNSVP)=LAST PLACE TO LOOK.
1=-->LOCAl STORAGE
2 — = =>F E 7CH EMPTY VEHICLE FRCM ELSEWHERE

IN NETWORK (ALSO THE DEFAULT METHOD
IF NONE WERE SPECIFIED)

5 — — -> LOOK AT S L * S ON SEARCH LIST FOR EMPTIES
(PSL 1ST)

((1,2,3), 1,0)

KMSL/I2 WHEN PDLSER - 1 OR 111

SEARCH LIST THE LIST OF STATION LINKS TO BE
SEARCHED WHEN LOOKING FOR AN EMPTY VEHICLE TO
SERVICE A WAITING TRIP. END OF LIST DELIMITED
BY ZERO.
(G , O, KNSL

)

-/I 2 THE STATION NUMBER OF THE STATION BEING SIMULATED*
THE VALUE ENTERED FUR THE STATION SHOULD ALSO 3E
THE ORIGIN STATION FOR TRIPS WALKING INTO THE

3-18

Table 3-1. Global Variables -- SCISYS (Page 16 of 58)

STATION, T H _ DESTINATION OF TRI^S RIDING INTO THE
STATIuN AND DEBOARDING TO LEAVE THE STATION, THE
NeXT STOP F OR VEH I C LE S ENTERING TnE STATION TO
DE3GARD AND SOAR'D TRIPS, AND A STOP ON THE ROUTES
Vimich pass through the station,
(I » i »)

STY E -ZL 1 TYPE Or STATION:
F—==>GFFL I HE

OFFLINE STATIONS CONTAIN a 'BYPASS LINK AND ONLINE
STATIONS DC NOT i VEHICLES NOT STOPPING AT ONLINE
STATIONS AVOID THE DEBOARDING AND BOARDING OF
t

r

i ps even though they pass through the station,
VEHICLES NOT STOPPING AT AM OFFLINE STATION CAN
TAKE THE BYPASS LINK AROUND T ME STATION.
IF, »)

---"oil: LEDCARDING and BOARDING 'DELAY CALCULATIONS DESCRIBED BELOW
ARE ‘USED IN PART TO DETER.VINE THE BOARD , DE BOARD, AND
_G I NT E VENT TIMES FOR VEHICLES AND TRAINS, THE FOLLOWING
DELAY CALCULATIONS APPLY TO AN INDIVIDUAL VEHICLE. THE
delay FOR a TkA IN is LGUAl TO THAT OF THE SLOWEST VEHICLE
IN THE TRAIN.

LET THE DELAY - N(U,V), VIZ., BE A NORMALLY DISTRIBUTED
RANDOM VARIAhLc WITH MEAN — U AND STAND A. rD DEVIATION
- V

.

THEN :

(1) THE TIME FOR THE SEPARATE DEBOARD EVENT
= NCUD.STDBSD)
where: UD=STQ3A*N0. OF PASS DE BOAR DING + STD3C

(2) THE TIME FOR THE SEPARATE HOARD EVENT
= N{ U9 *ST BSD

)

where: U5=ST3A*N0. of PASS BOARDING + ST BC
C 3 > THE TIME FOR THE JOINT DB D B EVENT

= MAXI N (L'D, STDBSD) , N C Ufc • ST ES D) +S TDLA Y)

WHERE

:

UD —S TJdA — NO • OF PASS DEBOARDING
- STUBBING. d ASS BOARDING
+ sroac
+ F lD 14 (1) Y NO .PASS BOARD I NG £ N G • PA SS D LB OA RD 1 NG

US-STSAYNG. OF PASS BOARDING
+ STBB- NO . OF PASS DEBOARDING
+ ST B C
+ P LD 14(2)# NO .PASS BOARDI $NO. PASS DE5GARDING

S T DE A -/IF DE30ARD TIME PER DEBOARDING PASSENGER USED IN

COMPUTING THE DEBOARD TIME DELAY FOR THE DEBOARD
AND JOINT EVENTS, (OPTIONAL; USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OK DEBOARD EVENTS.)

3-19

Table 3-1. Global Variables -- SCISYS (Page 17 of 58)

IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS 3Y THE I INPUT PROCESSOR,

(0 , ,)

SIDED -/I 4 DEBOARD TIME PER BOARDING PASS. USED IN COMPUTING
THE DEBOARD DELAY FOR THE JOINT E VENT . (OP TI ON AL

J

USED WHEN THE STATION HAS LINKS CONTAINING THE
JO I NT EVENT .)

IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.

(0 , ,)

ST DEC -/1 4 DE BOARD TIME PER DE BOARD VEHICLE USED IN
COMPUTING THE DEBCARD TIME DELAY FOR THE DE BOARD
AND JOINT EVENTS. (OPTIONAL; USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OR DISCARD EVENTS.)
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
70 CLOCK UNITS BY THE INPUT PROCESSOR.

(0 , ,)

L D 1 4 (1)—GUADAATiC COEFFICIENT USED IN

COMPUTING THE DE BOARD TIME DcLAY FOR THE JOINT
EVENT. (OPTIONAL; USED WHEN THE STATION HAS
LINKS CONTAINING THE JOINT EVENT.)
IT IS INPUT BY THE USER IN SEC ONDS AND CONVERTED
Tu CLOCK UNITS BY THE INPUT PROCESSOR.
(0 , ,)

F LD I 4 FLO I 4(2) -GUADRAT 1C COEFFICIENT USEu IN
F L D 1 4(2) COMPUTING THE BOARD TIME DELAY FOR THE JOINT

Ev/ENT. (Optional; USED WHEN THE STATION HAS
LINKS CONTAINING THE JOINT EVENT.)
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.
(0 >

STSA — / 1 4 BOARD TIME PER BOARDING PASSENGER USED IN

COMPUTING THE BOARD TIME DELAY FOR THE BOARD
AND JOINT E VENT S . (OPT IONAL ; USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OR BOARD EVENTS.)
IT IS INPUT BY THE Ug~£R IN SECONDS AND CONVERTED
TO CLUCK UNITS BY THE INPUT PROCESSOR.

(0 , .)

FLDI4 10/14
FlDI * (1)

STBS —/ 1 4 BOARD TIME PER DEBOARDING PASS. USED IN COMPUTING
THE BOARD DELAY FOR THE JOINT E VENT .(OPT ION AL

J

USED WHEN THE STATION HAS LINKS CONTAINING THE
JO I NT EVENT •)

IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESS OR

.

3-20

Table 3-1. Global Variables -- SCISYS (Page 18 of 58)

c

5 i D j L-'

£T;

STD LA

Y

SL 57 C ^

PLL IND

(0 , .)

—/ 1 4 BOARD TIME PER BOARD VErtl CLE USED IN'

COMPUTING T r>E BOARD TIME DELAY FOR THE BOARD
AND JOINT EVENTS. (OPTIONAL*, USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OR BOARD EVENTS.)
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.

(0 , ,)

—/ R4 STANDARD DEVIATION OF DEBOARD DELAY TIME USED IN
COMPUTING THE DEBOARD TIME DELAY FOR THE DEBOARD
AND JOINT EVENTS. (OPTIONAL: USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OR DEBOARD EVENTS.)
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.

(0 . 0 .)

—/ R 4 STANDARD DEVIATION OF BOARD DELAY TIME USED IN
COMPUTING THE BOARD TIME DELAY FOR THE BOARD
AND JOINT EVENTS. (OPTIONAL: USED WHEN THE STATION
HAS LINKS CONTAINING THE JOINT OR BOARD EVENTS.)
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS EY THE INPUT PROCESSOR.

(0 , 0 .)

-/I 4 DELAY BETWEEN The TIME THE DEE' O AR D EVENT IS TO
START AND THE BOARD EVENT IS TO START WHEN
COMPUTING THE BOARDING TIME DELAY FOR THE JOINT
EVENT. (REQUIRED ONLY WHEN THE STATION HAS
LINKS CONTAINING THE JOINT EVENT.)
WHEN A VALUE OF 0 I S ENTERED, COMMON DE BO AR D/BO ARD
IS IMPLIED. WHEN A VALUE GREATER THAN ZERO IS
ENTERED, FLUSH DEBO ARD/ 80ARD IS IMPLIED.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.
c- 1 ,-1 ,)

-/ I 2 THE STATION LINK NUMBER OF THE STATION LINK
DESIGNATED AS THE STORAGE LINK. THIS VALUE IS
INITIALIZED BY THE INPUT PROCESSOR TO THE
STATION LINK CONTAINING THE STORE EVENT.

-/LI UjER r S INDICATION AS TO WHETHER OR NOT THE
DELAY TO PLAN THE LOCAL MERGE OF THE VEHICLE
GOING ON THE OUTPUT RAMP WITH THOSE ON THE
BYPASS LINK IS TO BE INCLUDED IN THE LAUNCH
DELAY

.

F- = = >DO NOT INCLUDE "LOCAL'* MERGE DELAY
T ===>INCLUDE

3-21

Table 3-1. SCISYS (Page 19 of 58)Global Variables --

THE STATION MUST BE PROPERLY CONFIGURED FOR
locmL merging to be planned, e.g., have an gut°ut
RAMP AND A BYPASS LINK (THE SECOND LONGER THAN
THE FIRST), BOTH OF WHICH FEED INTO THE DOWNSTREAM
LINK. HEADWAY INFORMATION MUST BE SUPPLIED FOR
THE BYPASS LINK.
(F , » >

P i.N 1 o — / L 1 WHEN POLSER = I OR 2*.

INDICATOR Or WHETHER OR NOT ENTRAINMENT AND
DETRA IN MEN T ARE TO BE DONE IN THE STATION.

F —— - > NO ENTRAINMENT /DETRA INMENT TO BE DONE
T===>ENTRAINMLNT/DETR A INMEN 7' TO BE DONE

THE STATION MUST CONTAIN AT LEAVE ONE D LB GA RO
OK JOINT -VENT AND AT LEAST ONE LAUNCH EVENT
WHEN PENT 3 = 7 SINCE DETRA INMENT IS DONE BEFORE
DEBOARDING AND ENTRAINMENT IS DONE AFTER LAUNCH.
C F , ,)

VC AP —/1H TriE MAXIMUM NUMBER OF PASSENGERS A VEHICLE
CAN ACCOMMODATE
(6,0.)

P " X i R l — / I 2. THE MAXIMUM NUMBER OF VEHICLES IN A TRAIN.
THIS MUST BE AT llAST AS LARGE AS THE LARGEST
TRAIN GENERATED BY THE INPUT PROCESSOR (KMTLEN).
(1 , ,)

AX -/I 4 THE START INL SEED TO THE RANDOM NUMBER GENERATOR
MUST BE AN ODD INTEGER GREATER THAN OR EQUAL TO

three »

(Z , 3 ,)

A 57 AT U -/ I

2

NUMBER OF SAMPLING INTERVALS PER INTERMEDIATE
SAMPLING REPORT
£5,1,)

1'lSrLT -/1

2

TRIP SPLIT SIZE; ANY TRIP ENTERING THE STATION WHICH
IS LARGER THAN ?TSD LT WILL BE SPLIT INTO AS MANY
TRIPS OF PTSPLT PASSENGERS AS POSSIBLE AND ONE
SMALLER TRIP WITH THE REMAINING PASSENGERS. PTSPLT
SHO UL D BE NO LARGER THAN THE CAPACITY OF THE
TRIP LINKS (UCAP) AND THE CAPACITY OF THE
VEH ICLES (VCAP) .

(VCAP , 1 , V C A P

)

AS AMP I -/l 4 SAMPLING INTERVAL AT WHICH STATISTICS ARE RECORDED.
A VALUE OF ZERO IMPLIES NO SAMPLES ARE TAKEN.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.

3-22

Table 3-1. Global Variables — SCISYS (Page 20 of 58)

(oO *0 *)

4 C \h T I

A --LAG

A 1 !_

A VSOUR

—/ I 4 PERIODIC CHECKPOINT INTERVAL AT //HICH A CHECKPOINT
IS TAKEN. DEFAULT IMPLIES NO CHECKPOINT IS TAKEN.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS 3Y THE INPUT PROCESSOR.
(9999H9P * 0 *)

KWr'LAG/ 03 UG FLAGS
LI (INPUT VIA ASYNCHRONOUS DATA READ)

(F » *)

4/12 FAILURE DATA:
AF A I L (i) = NOT APPLICABLE
Ir STATION LINK!

AF A I L (2) IS THE STATION LINK NUMBER Or THE
STATION LINK BEING FAILED. DEGRADED. OR
PECGVERED

.

IF TRIP Li •fsK :

AF A 1 L (2) IS THE TRIP LINK NUMBER OF THE TRIP
LINK BEING FAILED. DEGRADED* OR RECOVERED.

IF STATION LINK:
AFAIl(S) - 1 IF STATION LINK ENTRY IS FAILED
AFA1L (3) - 2 IF STATION LINK EXIT IS FAILED
AF A I L (3) IS NOT APPLICABLE IE DEPREDATION OR

DEGRADATION RECOVERY.
Ir STATION LINK OR
IF TRIP LI NK

:

AF A I L (4) - 1 IF FAILURE
AF A I L (4

)

- 2 IF RECOVERY
AF A I L (4) - 3 IF DEGRADATION
AFAILC4) =4 IF DEGRADATION RECOVERY

This data IS ENTERED ASYNCHRONOUSLY AT FAILURE
TIME AND OFTEN FOLLOWED BY OTHER DATA ON GDIP
FORMAT TO UPDATE ADDITIONAL DATA ITEMS SUCH AS
NUMBER Or SERVERS (USERV) FOR TRIPS, AND
PENALTY TRAVEL FACTOR (SLPENT) FOR VEHICLES.

(0 , ,)

S/Ll VEHICLE ARRIVAL SOURCE*. THESE VALUES F OR AVSGUR(l),
A V SOUR (2) * AND AVSOUR(S) ARE INTIAlIZEO BY T HE
INPUT PROCESSOR BASED ON THE UPSTREAM STATION
LINK LIST (SlUSL) CR CONEIGUATCR. TO ENTER THEM
DIRECTLY TO THE MODEL PROCESSOR THE FOLLOWING
DEFINITIONS APPLY:

A V SOUR (1) IS THE UPSTREAM LINK (UL

)

A VSOGR (2) IS THE MODAL INPUT BEFORE PROCESSING
(M IB)

Av SOUR (3) IS THE MODAL INPUT AFT LR PROCESSING
(MIA)

3-23

S L L0U A

T V r

Table 3-1. Global Variables -- SCISYS (Page 21 of 58)

AVSOUR FOR THE THREE SOURCES CAN HAVE THE
FOLLO.V1NG VALUES:

!=-=>VtHlCLES ENTERING THIS WAY
F === >NU VEHICLES ENTERING THIS WAY

3/ IE STATION LINK SOURCE; TFHSE VALUES FOR SLSQUR(l),
SLSCUR(Z). AND S LS CUR (3 > ARE INITIALIZED BY THE
INPUT PROCESSOR BASED ON THE UPSTREAM STATION
LINK LIST (SLUSL) OR CONFIGURATOR. TO ENTER THEM
DIRECTLY INTO THE MODEL PROCESSOR THE FOLLOWING
DEFINITIONS APPLY:

Sl_ SOUR (1) IS THE UL STATION LINK NUMBER
SL SOUR (2) IS THE M 13 STATION LINK NUMBER
SL S OUR (3 > IS THE MIA STATION LINK NUMBER

—/LI INDICATOR AS TO WHETHER OR NOT THE TRIP AND
VEHICLE FILE IS- REGUESTED AS OUTPUT.

T===>WR I !E FILE
F = = =>DO NOT WRITE F I i_E

(F * »)

F L D I 4 (5 > FLDI4C3) MINIMUM EDGE OF FEL STATISTICS HISTOGRAM
SEE FLLI4 RZdq^TED IN TH- FINAL MODEL REPORT AND USED TO

rINE TONE THE FUTURE EVENTS LIST FOR PROCESSING
EFFICIENCY. THIS VALUE IS INITIALIZED BY T HE
INPUT PROCESSOR. TO ENTER IT DIRECTLY INTO THE
MODEL PROCESSOR ENTER IT IN CLOCK UNITS.
(CLSMAL*KMCLTA ,0 .

)

r L. D i 4 (4)

L EE FLL'I 4

FLD 14(4) WIDTH EDGE OF FEL STATISTICS HIST LG RAM
REPORTED IN THE FINAL MODEL RE PORT AND USED TO

FINE TUNE THE FUTURE EVENTS LIST FOR PROCESSING
EFFICIENCY. THIS VALUE IS INITIALIZED BY iHt
INPUT PROCESSOR. TO ENTER IT DIRECTLY INTO THE
MODEL PROCESSOR ENTER IT IN CLOCK UNITS*,
(CLSMAL*KMCLTA . 0 ,)

r L D I 4 10/14
FLD I 4 (6)- (10)

F L D J 2 10/12

FLDl 4

(

5) T HRU r LDI 4 (10) UNUSED
(0 . ,)

FLD

I

2 (1) THRU FLDI2C 10

)

UNUSED
CO » , >

Sl 1

F L D R4

1 0/Ll FLDL 1(1) T HRU FLDL 1

(

10) UNUSED
(F *)

1 0/R4 r L DR 4 (1) THRU F LOR 4

(

1 0) UNUSED
(0 , .)

3-24

Table 3-1. Global Variables -- SCITL (Page 22 of 58)

scitl: TRIP LINK DATA

VAR NAME DIM DESCRIPTION

=f**NOTE: THERE ARE THREE TRIP LINKS (KM TL = 3). THEY
ARE K NO W N A S :

1 = TICKETING LINK (T KL

)

2 = TURNSTILE LINK (SSL)
3 = BOARDING LINK (BCD

UCAr- KMTL/I2 CAPACITY CE THE TRIP LINK IN PASSENGERS. THIS MUST
EE AT LEAST AS LARGE AS THE LARGEST TRIP THAT WILL
EE WALKING INTO THE STATION OR TRANSFERRING FROM
A VEHICLE.
(i * 1 *)

UTIYt :< "iTL/I A WALK TIME ON TRIP LINK.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UN-ITS BY THE I NPUT PROCESSOR*
(C * C *)

t?tNOTE I TO DETERMINE THE AVERAGE AMOUNT OF T iM.E

FOR A TRIP TO GO THROUGH TICKETING (LINK 1

PROCESSING) AND THE TURNSTILE (i_I NK 2 PROCESSING),
THE FOLLOWING EGUaTIONS ARE USED:

PROCESS IWG T i Me —

((UT1MA * NO. OF PASS. IN TRIP / USER V

)

+ UT I Mb)

.

PROCESSING TIME lb NOT APPLICABLE TO THE BOARDING
LINK (LINK 5)c

UT I MiA KMTl/IA COEFFICIENT TcRM FOR THE NUMBER Or PASSENGERS IN
THE TRIP USED IN CALCULATING PROCESSING TIME ON
THE TRIP LINK.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY T HE I NPUT PROCESSOR.
1 G * C *)

U T I MB KDL/I4 CONSTANT TERM FOR THE TRIP USED IN CALCULATING
PROCESSING TIME ON THE TRIP LINK.
IT IS INPUT BY THE USER IN SECONDS AND CONVERTED
TO CLOCK UNITS BY THE INPUT PROCESSOR.
(0 , 0 ,)

USER V KMTL/I2 NUMBER OF SERVERS CURRENTLY ACTIVE ON THE
TRIP LINK (FOR TICKETING, LINK 1, AND TURNSTILE,
LINK 2, ONLY.) NOT APPLICABLE TO THE BOARDING
LINK (LINK 3) » WHEN A LINK Is FAILED, USER V IS

AUTOMATICALLY SET TO ZERO IN THE MODEL. TO
DEGRADE THE LINK, A REDUCED VALUc r OR USERV MUST

3-25

I

Table 3-1. Global Variables — SCITL (Page 23 of 58)

3E SPECIFIED IN ADDITION TO AFAIl_(2> AND AFAIL(4).
TO RECOVER FROM A DEGRADED OR FAILED LINK. AN
INCREASED VALUE FOR USE RV MUST 3E SPECIFIED IN
ADDITION TO AFAIL (2) AND AFAILU).
(O.O.

)

3-26

Table 3-1. Global Variables -- SCMFEL (Page 24 of 58)

scmfel: future event ^ist internal kata

V A R M AM E 3 I M DESCRIPTION

CLP OS

CLo AS E

C LK i N :

CloCAM

G L 7 / -.d L

C LS i ZE

CNF EL

CLOCK

CLS7AT

CM T Uk

D

-/I A CURRENT POSITION IN CLOCK TABLE
(1 — <C LP0S=< KMCLTA)

-/ I 4 BASE TIMt VALUE FOR FIRST ENTRY IN CLOCK
TABLE (CU =>' i G)

-/1 4 TIME (CU*10) OF CURRENT CLOCK TABLE
INTERVAL GIVEN EY CLPOS
(CLMI Ml^CLrf ASE+CLSM AL (CLPOS- 1))

-/Ll FLAG FOR US E. IN SCANNING CLOCK TABLE WHEN
RESCAN OF CLOCK TABLE REQUIRED UPON
REACHING END l POSCCLS1ZE) 0=F,1=T

KMCLTA CLGC^ TABLE - LIST HEAD POINTER TO XT NS
XI 2 ACTIVE IN CLOLK TABLE I NTER VAL CLM I N

I

-/I A NUMBE R OF ENTRIES I N CLOCK T AHLt

-/I 4 NUMBE R OF ENTRIES I N FUTURE EVENT LIST

— / I 4 S IMULAT ION CLOCK - CURREN

T

T 1 ME

3,10/14 FUTURE EVENTS TIMING ct AT 1 ‘s i J)

1=1 NUMBER OF ENTRIES X (I)

= 2 SUM X (I

)

—3 SUMSG X (I

)

J-l CLOCK TABLE INSERTIONS
-2 MULTIPLE THREAD CHAIN INSERTIONS
-3 DELTA T FUR C 1

)

-4 DELTA POSITIONS SKIPPED FOR (1)

= 5 NUMBER OF M/T RELOADS OF CLOCK TABLE
=6 DELTA POSITIONS SKIPPED FOR (2)
= 7 M/T LOOP SIZE (tfXTNS)
-8 UNUSED
29 UNUSED
=10 UNUSED

— / 1 2 MULTIPLE THREAD LIST HEAD

3-27

Table 3-1. Global Variables -- SCMFS (Page 25 of 58)

SCMFS I' FEL STATISTICS INTERNAL DATA

V A k N A M E DIM DESCRIPTION

r'ELHST 10/14 HISTOGRAM Or THE DELTA T» S SCHEDULED ON
THE FEL WITH S A PF EL i F EL HST (1 0) = TOT A

L

NUMBER PUT QN FEL

MCl_E 1 C — / I 4 MINIMUM EDGE OF FEL STATISTICS HISTOGRAM;
SET EQUAL TO FLDI4(3) IN SANFEL

v. 1 D 7 H — / I 4 WIDTH CF FEL STATISTICS HISTOGRAM;
SET EQUAL TO FLD I 4(4} IN SANFEL

3-28

Table 3-1. Global Variables SCMSL (Page 26 of 58)

SCMSL ; STATION LINK Dm! A - MODEL PROCESSOR

VAR NAME DIM DESCRIPTION

SLMEMT

3LH ZF

Si_E XI T

LI— NT

KMSL/I2 POINTER TO IKE TAIL OF THE MEMBERSHIP
CHAIN OF THIS STATION LINK

KMSL/L1 HEADWAY ZONE FLAG FOR THIS STATION LINK
F=——>HE A D WA Y ZONE IS NOT OCCUPIED
T = = = > HEAD W A Y ZONE IS OCCUPIED

KMSL/L1 INDICATES WHETHER EXIT OF STATION LINK IS FAILED
OR ACTIVE

F -- —> ACT I VE
T —— = > FA ILED

XMEL/Ll INDICATES WHETHER ENTRY OF STATION LINK IF FAILED
OR ACTIVE

F --=>ACT I'VE

T -= =>FA ILED

PSUEDO— OCCUPANC Y IS MAINTAINED CNlY FOR
STATION LINK * S WITH D3/B EVENTS AND EQUAL TO THE
CAPACITY MINUS THE NUMBER OF AVAILABLE
UPSTREAM BERTHS

H'OC L KM6L/ I 2

Table 3-1. Global Variables — SCMSYS (Page 27 of 58)
SYSTEM DA I A MODEL

DIM

-/L 1

DESCRI P I I UN

UE 1 UK NE l> tiY SS MiJJ AND USE > ru incicate:
F — ——>,iGT \J‘J i<it - J'HEkt ARE MORE VEHICLE EVENTS

TO OCCUR TO THE VEHICLE ON IIS SL
!===-> DOME - THERE ARE NO MORE VEHICLE EVENTS

fU uCCJ-t to the vehicle on its sl

a tuu r i<s —/LI kEI UkWhD Cl Y SSTt.SI AND USED TO INDICATE!
F ===>C«kkU I t. * I ER
I -=->CAN CilfcK

A DONE

T

-/LI

ALU R1

A VOXEL

/L 1

-/ 1 2

RETURNED BY SOMUD AND USED TO INCICATE:
F===>HUT _DLi!4E - THERE ARE MORE TRIP EVENTS

lb OCCUR TO THE IrtiP on its IE
r-=->OuNE — THERE ARE NO MORE TRIP EVENTS

1 O OCCUR ID THE TRIP ON ITS TL

RETURNED JY BUTLST AND USED TO INDICATE!
l"-=—AcANNu i CzN T E R
T -=—ACaM ESI izR

i-iLxT SL Or THc VEHICEi
is To as

UlI kG processed

A TNX I L -/I 2 THE NEXT TL THAT TnE TRIP BEING PROCESSED
I S T O O S iz

A AA iK ; >N

AVREC

A CARD

ALND

aslls

i

S jQ T L

NAM t_

SUE vi T L

ADL ST

A gP L S T

—/R A

-/ i 2

S/I 2

-/ I 2

~/L 1

T Hr_ RANDOM .RU MO ER GENERATED BY SMHM6 •

i T Is ONiFGHMLY distributed BETWEEN 0 &
l ktAL*4

)

i

;

1 UM OE R uh Tk'Ik S Y S T E r*1 . AVICtz TRANSACTION

NU JIblR OF VEHICLE SYSTEM SERVICE TRANSACTION FOR
FROM tAbri SOURCE

1 — 0:4 GU I utV.'AY UPSTREAM UF SIAT ION
<_ — MODAL. » z v3 i < Y BclFORL PROCtz SS 1 MG
3 — MODAL i- (TRY ALTER PROCESSING

number of asynchronous system service transaction

0‘« I C VARIABLE
IS TO cNl)

(EL is/ Lib I OF DUWnSTKLA 4 sL •

In SSTEST AND SMOI VF

-/ I A

TO INDICATE THAT THE SIMULATION

PAsSED BETWEEN

—/ I A

-/I A

KM TL;
/ 1 2

HblMIc v TO TAIL OF TRIPS READY TO oGARD
VEHICLES (TRIPS 'KILL BE JUEUED TO THIS
USING TUUtbh)

NAME OF THE MUST rECLNILY READ ASYNCHRONOUS
HEADER C R cJ

Hiz A D USED TO CHAIN ALL VEHICLE IN THE
THAT ARE IN Tun BOARD EVENT

LIST Ol VI

rzND uF i I ST
s in detrained train;
<hKKLU l)Y v)

KMSLCAP THIS TREE IS A WRAP—AROUND LIST OF GAPS
,L/I4 IN Tr»E BYPASS LINK ELIGIBLE FOR VEHICLES

AWAITING A LOCAL MERGE TO ATTEMPT TO
MciRGl. INISi. tzACH PAIR OF TIMES IS THE
GA P • S STAR T AND END T I ME THE TI4t_S
AT v, 1 1 Ci) 'IIIl START Ut- THE GAP AND THE END
uF THL a/P V ILL HAVE FINISHED TRAVELING

3-30

oPA Y TL

GPAu I L

GlM i . X ;

VAr < NAME

A .'iMA-'iL

Af'iFLAG

Table 3-1. Global Variables -- SCMSYS (Page 28 of 58)

iR rriL bYF ASS LINK.

-/ 1 4 PJlITf: (T (J 1 Mir NEXT «V/ULAdLt Ghk
At~ TLt< MLiPULO CSL i^AT I GAJ

—/ 1 A POlNTtii To T>(Ht LAST GAS AODtD Tu AuPLST
aF 1 elk TuuULU GPlKaTICM

] NDlX JaTm rOK MODEL HK'GCLSSLin!

DIM OLSC.-tlPT ISM

ii)»3/Li MEMbES NAMES PAhSEO FROM FARM FILL’S
10/Ll INDICATORS AS I u fHLTHtP UR NUT FILLS

ARE USED

3-31

Table 3-1. Global Variables — SCMT (Page 29 of 58)

S C M 7 : TRIP DATA - MODEL PROCESSOR

VAR N A ME D I M DESCR 1PTION

TaRKT KMT/14 ARR I VAL T I ME OF THE TRIP

< QR i G KMT/12 ORIGIN STATION OF Tr.E TRIP

TDEST KMT/ I

2

DESTINATION OF THE TRIP (FINAL)

T P ASS KMT/12 NUMBER OF PASSENGERS ON THE TRIP

T Mf MCK K MT/ I

2

USED TO CHAIN TRIPS THAT ARE A MEMBERS
OF A TRIP LINK

i GR E A S KMT/ I

2

REASON THE TRIP IS GUEUED:
0===>7RIP cn fel; only head trip on trip link can

BE ON FEL
1 = = => TRIP QUEUED DUE TO CONGESTION OR FAILURE;

ONLY THE HEAD TRIP ON A TRIP LINK
CAN HAVE THIS TQ RE A S ON

2 == -> T RIP QUEUED DO TO TRIP IN FRONT
OF IT V OTHERWISE DONE
NO TRIP CAN HAVE THIS TQREASON
SINCE THE TRIP MUST BE AT THE
HEAD OF ITS TRIP LINK IN ORDER TO START
ITS PROCESSING EVENT

3 = — = > TR IP CUEUED DUE TO WAITING TO START
ITS PROCESSING EVENT

4 —— — STRIP QUEUED IN BOARDING QUEUE OR ON
VEHICLE *S TRIP QUEUE

3-32

Table 3-1. Global Variables' — SCMTL (Page 30 of 58)

SCMTL : TR I P LINK DATA - MODEL PROCESSOR

VAR NAME DIM DESCRIPTION

UmEMTL KMTL/I2 POINTER TO TAlc OF CHAIN OF TkIPS THAT
ARE MEMBERS OF THIS TRIP LINK

U JCt KMT L/ 12 CURRENT NUMEER OF PASSENGERS IN THE TRIP LINK

3-33

Table 3-1. Global Variables -- SCMV (Page 31 of 58)

s l m v : VEHICLE DATA - MODE L PROCE

VmR name D i M D EE C R IP f I ON

VN A S TN KMV/12 N E. X T S I GP OF T FE

VLlVS'f K MV / I 2 I NDI CATES IF T FI E

STORAGE AT T HE

VS I N'<

VkG'JT

V N i-\S

V 'i OTP

<MV/ 12

K M V / 1 2

< M //I 2

KMV/1

,

< M V / I 2

Q=-= — > DO NOT DIVERT TO STORAGE
1 =— =>D I VERT TO STORAGE

SINK THROUGH WHICH THE VEHICLE lS TG EXIT
THE MODEL

1 — = — > ON GUIDE WAY

2—

— — >f-?GDA L EXIT BEFORE PROCESSING

3-

-- >MODAL EXIT AFTER PROCESSING

FOR scheduled: THE NUMBER OF THE
SCHEDULED ROUTE TO WHICH THE VEHICLE
HAS SEEN ASSIGNED (POINTER TO VRPTR)

CURRENT OCCUPANCY OF THE VEHICLE
Or PASSENGERS ON BOARD

- NUMBER

THE NUMBER OF PASSENGERS TO BOARD OR
DE BOARD THE VEHICLE

NUMBER CF VEHICLES IN THE TRAIN
-SET FOR ALL VEHICLES IN TRAIN BY IP;

USE FOR HEAD VEHICLE
-count includes head vehicle
-SET TO 1 IF NO TRAIN

v M E !
’ C H

V fRN'CH

KMV/12 USED TO CHAIN ALL VEHICLES ON AN STATION LINK IN THE

ORDER THEY ARRIVED (TU FOkM A MEMBERSHIP
CHA IN)

KMV/12 CHAIN WORD FOR MAINTAINING VEHICLE
ENTRA I NMENT

— 0= — = >NGT ENTRAINED
>0=-->IS ENTRAINED
lt_AST VEH IN TRAIN POINTS TO HEAD VEH }

VEEVCH KMV/12 USED TO CHAIN ALL VEHICLES IN THE BOARD
E VENT
ALSO USED TO SUPPORT THE COLLECTION OF

STATISTICS REGARDING THE FEL/ QUEUED
ORIGIN GF THE VEHICLE
=KMX+1===> V IS A FOLLOWER VEHICLE

IN A TRAIN LEAD BY A

3-34

Table 3-1. Global Variables — SCMV (Page 32 of 58)

VEHICLE WHICH CAME OFF THE FEL
-K.MX+2 = ==> THE FOLLOWER VEHICLES IN THE

TRAIN LEAD BY V HAD BEEN
QUEUED WHILE V HA D COME OFF
THE FEL

VARRT KMV/I4 ARRIVAL TIME OF THE VEHICLE IN THE MODELLED
AREA

VuREAS < MV / 1 2 i-==> VEHICLE AT HEAD OF STATION LINK £, QUEUED DUE
TO :

(A) CONGESTION
(6) EXIT THIS LINK FAILED; OR
(C) ENTRY NEXT LINK FAILED

2=— —>vEHl CLE QUEUED DUE TO OTHER VLH IN FRONT
& OTHERWISE * D ONE *

3 = == > VEHICLE GUe'UED DUE TO OTHER VEH IN FRONT
D WAITING TG START LAUNCH EVENT

A = = = > VEHICLE QUEUED IN STORAGE
0 - = -> NO NE OF THE ABOVE <=-=> ON -EL

V T R 1 ° G K.MV/I2 VEHICLE'S TRIP QUEUE - WHERE TRIPS RESIDE
WHI i_E ON THE VEHICLE; POINTER TO CHAIN
CF TRIPS; 0 WHEN THERE ARE NO TRIPS ON
VEHICLE

V LTL KMV/12 POINTER TO TAIL Or CHAIN Or TRIP THAT ARE
ABOUT TO BOARD VEHICLE

vlbltl KLMV/I2 POINTER TO TAIL OF CHAIN OF TRIP THAT ARE
ABOUT TO DEBOARD VEHICLE AND LEAVE STATION

VDXLlL KMV/12 POINTER TO TAIL OF CHAIN Or TRIP THAT ARE
ABOUT TO DE20ARD VEHICLE AND TRANSFER

V LAGA N KMV/L1 TO INDICATE THAT THE L2 EVENT HAS TO BE
PERFORMED AGAIN SINCE IT WAS NOT POSSIBLE
TO FIND AN ADEQUATE OPENING ON THE BYPASS
L I NK
T=-=>DO AGAIN
F —= — > DO NOT REPEAT

VkES KMV/Li INDICATES WHETHER OR NOT THE VEHICLE IS
RESERVED
T = — —>RE SERVED
F===>NOT RESERVED

3-35

Table 3-1. Global Variables — SCMXTN (Page 33 of 58)

SCMXTN: X

T

N HEAutk DATA - MODEL PROCESSOR

VAR M A >1 £ DIM/TYPE DESCRIPTION

KMX/14 Ir VTIME > CLOCK. * THEN THIS IS THE TIME
AT WHICH THE VE H I CLE/ TR I P/TK A NS ACT I ON I S TO
COME OFF the fel;

IF VTIME < CLUCK* THEN THIS IS THE TIME
AT WHICH THE VE H I CL b/TR IP XT RA NS ACT ION CAME OFF
THE FEL AND WAS PUT IN A QUEUE

XT 1NE/
VTIME/
T T I M E

XS EVNJT/
VSEVNT/
T 5 E V NT

KMX/12 SYSTEM EVENT - WHERE TO GO IN MAIN ROUTINE
WHEN COME OFF FEL TO BE DISTINGUISHED
FROM VME VNT/TME VNT WHCH TELL WHERE TO GO IN

SSMUD/SUMUD

XMEVN7 KMX/12 T R AN S AC T 1 UN /V EH /T k I P EVENT - WHERE TO GO IN ASYNCH/
V.MEVNT 35MOD/SUMOD (CURRENT STATION LlNK/TRIP LINK EVENT)
T MEVNT

STATION LINK EVENTS PROCESSED BY SSMOD ARE:
1

-

-=>HE AD WAY ZONE
2 == =>TRAVEL
3 —— — >LE3 O AR

D

A —— — >bOARD
5—==> JO I NT
5— >STGRE
7 —= ->L AUNCH
0===>END

TRIP LINK EVENTS PROCESSED BY SUMOD ARE:
1 ===>V!?ALK

2—

——>PROCESS ING

ASYNCHRONOUS EVENTS PROCESSED 3Y SA ASYN ARE:
1 = = = >DA 1 A
2 == = >PAR A

M

3===>OPT i ON
4 -= =>SELECT
S = >F A I L
6== = >F LAG
7 =•= — >T EXT
8===>CKPT
y == —>EGD
10—=—>STOP
I 1 —— — > T R I P
12===>VEh

XFELCH/
VFELCH/
TFlLCH/

KMX/12 CHAIN WORD TO PUT TR A NSAC T I ON / V EH 1 CLE /TR I P IN FEL
OR CHAIN WORD USED TO CHAIN TRA NSAC T I ON S/ VE H I CL E S/

TRIPS INTO A QUEUE WHEN NOT ON THE FEL*

3-36

Table 3-1. Global Variables SCMXTN (Page 34 of 58)

XGUE CH/
V GGE C H /
TGUECH 1GUECH=— >TR1PS ON A VEHICLE. TRIM'S IN BOARDING

QUEUE

XEXTR 1

/

VCuRR/
T CUR F<

< M X / I 2 EXTRA HALFWORD FOR MISCELLANEOUS DATA
IMMEDIATELY WHEN TRANSACTION COMES OFF FELI
THE NUMBER OF THE STATION BEING SIMULATED;
THE TRIP LINN ON WHICH THE TRIP IS CURRENTLY

located:
0==— > JUST ARRIVING
1 - = ->T I CKET I N'G LINK
2=-=>TURNST ILE LINK
3 = ==>BO AR D 1 NG QUEUE
4===>AT END OF TRIP LINK EVENTS.

X ci X T R 2/

V SL

KMX/12 EXTRA HALrWORD rOR MISCELLANEOUS DATA
IMMEDIATELY WHEN -TRANSACTION COMES OFF F EL

J

THE STATION LINK ON WHICH THE VEHICLE IS
CURRENTLY LOCATED

.T . NOTh : FOR THE ABOVE 6 DATA ITEMS

:

SINCE VtH, TRIPS* AND TRANSACTIONS CAN BE PLACED ON THE PEL*
THEY kEQUIRE UNIQUE ID NUMBERS; THAT IS, VEH ID fr 1

»

TRIP ID #1 AND TRANSACTION ID ft 1 CANNOT EXIST SIMULTANEOUSLY
SINCE ON THE PEL THERE WOULD BE NO WAY OF
DIFFERENTIATING BETWEEN THEM. THEREFORE, TRANSACTION ID,
REGARDLESS Or TYPE MUST BE SEQUENTIAL:

VEHICLES: 1 THRU KMV
TRIPS: KMV+1 THRU KMV+KMT
TkANS ACT 1 CNS: K M V-fKMT + 1 THRU KMX (SYSTEM SERVICE TRANSACT-

IONS)
EQUIVALENCE BETWEEN NAMES ALLOWS VEHICLE TRANSACTIONS TO
BE INDEXED INTO BY VEHICLE NUMBER (1 KMV) AND TRIP
TRANSACTIONS TO BE INDEXED INTO BY TRIP NUMBER (1 KMT)
IN THE MODEL CODE WHILE BEING REFERRED TO BY UNIQUE
TXN NUMBER (1 KMX) IN THE CODE THAT PUTS THEM ON
mNO TAKES THEM OFF THE PEL.
THE EQUIVALENCE RELATIONSHIPS ARE AS FOLLOWS:

TTIME(l) = VI I ME (KMV + 1) - X T I ME (K MV + 1)

TSE VN T (1) -V SE VNT C KMV-R I) -XSE VNT(KMV+1)

TME VNT (1) = vN1E VNT (KMV+ 1) =XME VNT (KMV+1)

T F E L CH (1)=VrELCH (KM V+l)=XPELCH(KMV+1)

XEXTR 1 AND XE XT R 2 ARE EQUIVALENCE J TO TRIP AND
VEHICLE DATA

THE AVAILABLE CHAIN OF SYSTEM SERVICE TRANSACTIONS
INCLUDES TRANSACTIONS IN THE FOLLOWING RANGES
OF TRANSACTION ID (1 KMX):

KMV +KMT+1 KMX

3-37

Table 3-1. Global Variables -- SCMXTN (Page 35 of 58)

KNV+ 1 K MV (UNUSED VEHICLE TRANSACTIONS)
<V!V +KWT+1 KMV+KMT (UNUSED TRIP TRANSACTIONS)

X AVA I i_ — / I 2 POINTER TO THE AVAILABLE CHAIN OF SYSTEM SERVICE
TRANSACTIONS

vavai

l

—/ I 2 POINTER TU THE AVAILABLE CHAIN OF VEHICLE
TRANSACTIONS

T AVA 1

L

—/ I 2 POINTER TO THE AVAILABLE CHAIN OF TRIP TRANSACTIONS

x ac r i v/
vac r iv/
TACT i V

-/I 4 THE ID OF THE CURRENT TRANSACTION BEING PROCESSED.
THE ONE THAT HAS MOST RECENTLY COME OFF THE r EL •

XAC T I V/VACT I V/T ACTI V ARE EOU I VALENCED SINCE THERE
IS ONLY ONE ACTIVE TRANSACTION AND SINCE IT IS
OFTEN CONVENIENT TO REFER TO IT AS A VEHICLE OR
TR I Pe

3-38

Table 3-1. Global Variables — SCNMAX (Page 36 of 58)

NAME : SCNMAX category: input processor runtime limits

VARIABLE DIM TYPE DESCRIPTION

Ki'4 I A T 1*2 NUMBER OF ENTRIES IN TRIP INTER-
ARRIVAL TIME D1STRI5UTION
(,1.KMIAT)

KNIAV — 1*2 NUMBER CF ENTRIES IN VEHICLE INTER—
ARRIVAL TIME DISTRIBUTION
(, 1 »KMI AT

)

<NNP - 1*2 MAXIMUM NUMBER OF P ASSE NGER S/T R 1

P

(, 1 *K MNP

)

<NNT - 1*2 MAXIMUM NUMBER Or TRIRS/VEH ICLE
(. 0 ,KMNT

)

NNS - 1*2 MAXIMUM NUMBER OF DESTINATION
ST AT IONS
(, l.KMS)

KNTLEN — 1*2 MAXIMUM TRAIN LENGTH IN VEHICLES
(» 1 .K.MTLEN)

3-39

Table 3-1. Global Variables — SCNSYS (Page 37 of 58)

Aof COMMON AUt A DEF 1 N 1 T IOW

HAfit : sc; !SYS CATLciLikY: INPUT PROCESSOR SHULAI ILtff SYSTEM
CHaR hC fERISTICS

vak i a;iLl D I ft I YPl UESCR 1PT 1 UN

AljCO S 1 1*2 GUN I ENTS OF COLS 11-72 OF DATA
HEADER CARD

ADATE 7 L*i DATE OF CURRENT RUN FROM INDEX INPUT

rttrl'L* — L* 1 IF ON* rlfiJ uF INPUT DATA HAS SEEN
F QUMO

AB OF - L r] JF IN, END oF FILE FOUND ON INPUT
DA T A Sf_ T

AHDk - L* i iF UN, Data header card HAS seen
PROCESSED

A I NDE X — C-r I I.r OH, INDEX DATA HAS dEEU A_AQ

AMN hME o * 6 i— ^ 1 names uf members which may be written
ID SuTPUl rlLES oY IP* SUPPElED
dY user in parm field

AR A f*D - K k RANDOM NUMBER BETWEEN 0—

1

AKN I 1M —
1 if un* runtime data has been written

Ar<N 1 M I — L* 1 if ON* RUNT I ME DATA HAS DEEM READ

ASY — L* 1 IF UN, SYSTEM DATA HAS BEEN READ

ASCHAR - L* 1 IF ON, SYSTEM CHARACTERISTICS
have been read

ASE 1 up — E* i it- ON, 40 CEL SEIUP HAS BEEN
REQUESTED BY USER

AT DUE

N

— L* I IF UN, TnIP GENERATION HAS SEEN
REQUESTED BY USER

ATE Al 1 3 i *2 DATA card image

AT I Kb — R* u SIMULATED f 1 ME ASSOCIATED WITH INPUT
data currently being processed (secs)

AT 1 *G — K * A VALUc OF TIME FIELD ON DATA HEADER
BARD* SIMULATED TIME QT WHICH INPUT
DATA IS TG UE READ (SECS)

AT 1 IL^ 1 2 1 * A TITLE ur CURRENT RUN FROM INDoX DATA

AT YpE -
I PlRST POOH CHARACTERS OF DATA TYPE

Ur* header CARD

AVDCEN — En 1 IP UN, VEHICLE GENERATION REQUESTED
BY US.clA

AV T fPE — E* 1 SOURCE OF VE H 1 CL B DEMAND (G=GU i DEW A Y ,

A—MODAL i (PUT BEFORE PROCESSING*

3-40

AUS LW

Table 3-1. Global Variables — SCNSYS (Page 38 of 58)

B—MODAL I iSPUT AhTtu
SUPPLIED dY USER IU

PROCESSING)
PAk.M HELD EOk index

7 USER J.i>t'NT IF iCATIO?* FOR INDEX FILE

3-41

Table 3-1. Global Variables -- SCNTDM (Page 39 of 58)

NAME: SON . DM category: trip demand generation (I NPUT

)

V Ah 1 A B LE u I M TYPE DESCRIPTION

DRAM ON - R*4 RANDOM NUMBER BETWEEN 0-1

Lj » AK 1

V

- ft* 4 ARRIVAL TIME OF TRIP
(» 0 »D TEND'D

DTLE5D KM S R*4 PROBABILITY Or A TRIP ENDING AT

EACH OF OTHER STATIONS
(*0,1)
SUM OF DISTRIBUTION MUST = 1.0

DT LEST - 1*2 DESTINATION OF TRIP
(* 1 » KNS

)

L TEN DT 1*4 SIMULATED TIME AT WHICH TRIP GEN.
IS TO END (SECS)
(• 0+» LV ENDG)

DT IASVv L* 1 SPECIFIES WHETHER EXPQNENT1 AL(0)

USER (1) I AT DISTkIBUTION IS TO 5

USED
(,0,1)

OR
E

l/ 1 i 1 U KM 1 A T »

O
i—

R* 4 USER'S I A 7 DISTRIBUTION. COLl -

PROBABILITY, C0L2=TIME
SUM OF DISTRIBUTION MUST - 1.0
coli : (, o, l

)

COL2 : (,G,LT I A TH

)

DT L l/ A — R*4 MEAN ARRIVAL RATE (TRIPS/TIME)
(, 0 » L T 1 AT h

)

L»TP A SO KHNP R* 4 PROBABILITY OF A TRIP HAVING 1,2,
K MNP PASSENGERS
(,0,1)
SUM OF DISTRIBUTION MUST = 1.0

9 9

UTPAoS —
I 2 NO. PASSENGERS IN A TRIP

(, 1 • K NNP

)

3-42

Table 3-1. Global Variables — SCNTDM (Page 40 of 58)

D 7 S T A N — I t2

l)T £T A i 1 + 2

1 + 4

SI A 1]CN BEING SIMULATED
(* 1 .KNS

)

TRIP STATISTICS EY DESTINATION
ROW 1 =NO • TRIPS. ROW 2-NO » PASSENGERS

RANDOM NO. SEED
(TKSELD ODD INTEGER >=• S)

3-43

Table 3-1. Global Variables — SCNVDM (Page 41 of 58)

NAM Cl ; SC NV DM CATEGORY; VEHICLE DEMAND GENERATION (INPUT)

VARIABLE DIM TYPE DESCRIPTION

DR AN DO R*4 RANDOM NUMBER BETWEEN 0-1

DVAR IV R*4 CURRENT ARRIVAL TIME
(» C + , DVENDT

)

L> VA R V A KMR R*4 FOR SChED. ENV. , ARRIVAL TIME OF NEXT
VEHICLE ON ROUTE
l , 0+, DVENDT

)

DY'CAPP - 1*2 VEHICLE CAPACITY IN PASSENGERS
(• 1 .)

DVDESD KVS R*4 PROBABILITY OF TRIP ENDING AT EACH
OF THE OTHER STATIONS
(* 1 * K MS)

SUM OF DISTRIBUTION MUST = 1.0

DVDEST — 1*2 DESTINATION OF TRIP BEING GENERATED
(, 1 ,<MS)

DVENDT - 1*4 TIME AT WHICH DEMAND GENERATION IS TO
STOP ISECS)
(.0+ . LVENDT

)

D V HD WY - 1*4 MINUMUM HEADWAY BETWEEN
CURRENT AND PREVIOUS TR A I NS /VEH 1 C lE

S

(.0,)

DVIASW - 1*2 INDICATOR SPECIFYING WHETHER EXP(O)
OR USER (1) I AT DIST. SHOULD BE USED
(,0,1)

DViAlO KM I AT.
2

R*4 U SER *S INTERARRIVAL TIME DIST.
COL 1=PR06 AB ILIT Y • COL2=TlME
SUM OF DISTRIBUTION MUST - 1.0)
coli : (,o,i)
COL2 : (*0+*DVENDT)

3-44

Table 3-1. Global Variables — SCNVDM (Page 42 of 58)

cV I ATM

L-VLMlA nMR

L'V\X 1 D

DVNX r T

DVPASD KV.NP

D VPASS

DVPM l N

DV-'JUl

LV-.PTk KMR

i^Y^SCH KMRT

iJV.-TbT KM R

OVj.kV

DVSI NK

R*4 CURRENT 1MERARR1VAL TIME
(, 0-*- * L>V E NDT)

R*4 MEAN ARRIVAL RATE CT RANS/T 1ME) BY ST E

(, 0+,LT IATH)

1*2 INDICATOR SPECIFYING NEXT STOP SELEC-
TION METHOD DVRTSTI 0) ,DVR£CHt 1

)

(FOR SCHEDULED SERVICc)
(, C , 1)

1*2 NEXT STOP FOR VEHICLE BEING GENERATED
(, 0 ,KNS)

K*4 PROBABILITY OF TRIP HAVING 1*2,, .PASS
(, C , 1)

SUM OF DISTRIBUTION MUST = 1,0

1*2 NO. CF PASSENlERS IN TRIP
(, 1 ,KNNP)

R*4 PROBABILITY OF VEHICLE ENTERING AT
MINIMUM HEADWAY
(, 0 * 1)

1*2 ROUTE OF VEHICLE BEING GENERATED
(* 1 *KNR)

1*2 POINTER TO STARTING ENTRY FOR EACH
ROUTE

1*2 CONCATENATION OF ALl SCHEDULED ROUTES.
FIRST ENTRY TO EACH IS POINTED TO BY
D VRPTR
(, 1 *KMS)

1*2 FOR EACH ROUTE AN INDICATOR SPECIFY-
ING WHETHER DVSTAN IS ON THE ROUTE(l)
OR NOT(O)
(, C, 1)

1*2 SERVICE POLICY IN USE -

1 -DEMAND RESPONSIVE SINGLE PaRTY
2= DEMAND RESPONSIVE MULTI PARTY
3- SCHEDULED SERVICE
(,1,3)

1*2 SINK
(* 1 * D)

3-45

Table 3-1. Global Variables — SCNVDM (Page 43 of 58)

DVSLuT

D v'SMKO

DViNifc

L Vb7 AN

DV S T 7

JVSTPP

SV1LND

UVTLNR

uVTRIP

jVTRLN

D V TR °L)

DVVPA

S

DWTRP

1 * 2

P* 4

1*2

I £ 2

6 * KMR 1*4

K * 4

KM T i_tN R*4

KMR 1 *2

KMN T

1 *2

1*2

KM N T R * 4

1*2

1*2

LENGTH Or Si_CJT IN T I ML
< * 0-r * LVLLOT)

PROBr OF VEHICLE LEAVING AT I O F 3
SINKS
< * 0 * 1)

SUM OF DISTRIBUTION MUST - 1

INDICATOR SPECIFYING WHETHER VEHICLES
ARE BEING GEN'D FOR SYNC(l) ENV OR
NOT (0

)

C ,0*1)

STATION BEING SIMULATED
(, 1 *KMS)

VEHICLE GENERATION SUMMARY DATA
ROWS1-4 -TRAINS ,VEH ICLES, TRIPS, PASS

STOPPI NG
ROWS 5-6=TRAlNS, VEHICLES NOT STOPPING

FOR DEMAND RE SP . EHf., PROS. OF
STOPPING AT THE STATION BEING SIM«D
(,C * 1)

PROBABILITY OF HAVING 1 ,2 ,» .VEHICLES
IN TRAIN
(,0,1

)

SOM OF DISTRIBUTION MUST - 1.0

LENGTH Or TRAINS ON EACH ROUTE
(, 1 .KNTLEN

)

TRIP FOLLOWER RECORDS FOR A VEHICLE

-

COLS ARE DEST AND NO. PASSENGERS

TRAIN LENGTH IN VEHICLES
(, 1 , KNTLEN

)

PROS OF HAVING
0*1*2,

,

, TRIPS /VEHICLE
(,0,1)
SUM OF DISTRIBUTION MUST = 1.0

NO. PASSENGERS IN VEHICLE
(,0,DVCAPP)

NO. TRIPS IN VEHICLE
(, 0 , K NN T)

3-46

Table 3-1. Global Variables — SCNVDM (Page 44 of 58)

VrCSE 1*4 RANDOM NUMBER SEED
(VKSEED >=• 3 ODD INTEGER)

3-47

Table 3-1. Global Variables — SCZ (Page 45 of 58)

VAR NAME DIM DESCRIPTION

KMNST NUMBER OF STATION STATES (DEFINED IN SM AX S I 2E

)

kmsst number of STATION LINK. STATES(•*
)

KMTST NUMBER Or Tk I P LINK STATES (**)

STATISTICS ON VEHICLES IN STATION STATES
ZNVNE KMNST NUMbER OF VEHICLES ENTERING STATE I Or THE STATION

/I 2 DURING THE LAST SAMPLING INTERVAL
ZNVN'L KMNST NUMbER OF VEHICLES LEAVING STATE I OF THE STATION

XI 2 DURING THE LAST SAMPLING INTERVAL
Z NV N I KMNST NUMBER OF VE HICl.ES IN STATE I OF THE ST AT ION

/I 2 AT THE END OF THE LAST SAMPLING INTERVAL
2NVMN I KmN ST MAXIMUM NUMBER OF VEHICLES IN STATE I OF STATION

/ 1 2 DUPING THE LAST SAMPLING I NTE RV AL
ZNVT I N KMNST INTEGRAL Or VEHICLE -TIME IN STATE I IN STATION

/I 4 DURING the LAST SAMPLING INTERVAL
ZN'VlTL K MNST SUM OF TIMES IN STATE I OF VEHICLES L E A VI NG

/I 4 during the l-AST SAMPLING INTERVAL
Z NVMT L KMNST MAXI MUM TIME IN S T A TE I OF VEHICLES LEA VI NG

/I 4 DURING THE LAST SAMPLING INTERVAL
ZNV AN I KMNST AVERAGE NUMBER OF VEHICLES IN STATE I

/ R 4 D UR I N G THE LAST SAMPLING interval
ZNVP.TL K MNST AVERAGE TIME IN STATE I OF VEHICLES LEA VI NG

/ R £+ DURING THE LAST SAMPLING INTE RV AL

ST AT I ST IlS ON TRIPS IN STATION STATES
Z N T N E KMNST

/I 2

NUMSEk OF TRI=>S ENTERING STATE 1 OF THE STATION
DURING THE LAST SAMPLING INTERVAL

Z NT NL K MN ST
/ I 2

NUMuER OF TRIPS LEAVING STATE I OF THE STATION
DURING THE LAST SAMPLING INTERVAL

ZNTNI KMNST
/ I 2

NUMBER OF TRIPS IN STATE I OF THE STATION
AT THE END OF THE LAST SAMPLING INTERVAL

Z NT MN I KMNST
/ I 2

MAXIMUM NUMBER OF TRIPS IN STATE 1 OF STATION
DURING THE LAST SAMPLING INTERVAL

Z N 7 TIN KMNST
/I 4

INTEGRAL OF TRIP-TIME IN STATE I IN STATION
DURING THE LAST SAMPLING INTERVAL

Z NT ST

L

K MNST
/I 4

SUM OF TIMES IN STATE I OF TRIPS LEAVING
during the last sampling interval

Z N'T >,T L K M N S T

/ I 4

MAXIMUM TIME IN STATE I OF TRIPS LEAVING
DURING THE LAST SAMPLING INTERVAL

Z NT AN 1 KMNST
/R4

AVERAGE NUMBER OF TRIPS IN STATE 1

during the last sampling interval
Z NT AT l K MNST

/R4
A VERA GE TIME IN STATE I OF TRIPS LEAVING

DURING THE LAST SAMPLING INTERVAL

STATISTICS ON PASSENGERS IN STATION STATES
2NPNE KMNST NUMBER OF PASS. ENTERING STATE I OF THE STATION

/ 1 £ DURING THE LAST SAMPLING INTERVAL

3-48

ZNPNL

ZNPN1

Z I

ZNPT I N

Z N’P ST L

znpmtl

Z NP AN I

ZNP AT L

STAT
ZSVNE

ZbV NL

ZSVM

ZbV.MN i

ZbvTI N

ZoVbT

L

ZSVMTL

Z E V AM

i

ZSVATl

ST AT

/ T i N r_

Z T 7 ML

Z ITM

Z TTMN i

2 TT TIM

ZTTiTL

Table 3-1. Global Variables -- SCZ (Page 46 of 58)

K MN ST NUV.BE R OF PAS S. LE A VI

/I 2 D UR ING THE LA ST S AM
K y<N ST NUMSZ R OF PAS G • I N ST
/I A T THE END OF THE L

K .MN ol MAX IM UM NUMLE K GF P AS
/I c. DUR ING THE LA ST s AM

K MN ST INTELRAL Or P AS S • — T IM

/I 4 DUR ING THE LA ST S AM
K MN ST SUM 0 r T 1 MES IN STATE
/I 4 DUR ING THE LA ST S AM

K MN ST MAXIM UM T IME IN STA TE
/I 4 DUR ING THE LA ST S AM

K MNST AVERA GE NUMoE R OF P AS
/R 4 DUR ING THE LA ST s AM

K MN ST AVERA GE T IME IN STA TE
/R 4 DUR ING THE LA ST s AM

NG STATE I OF THE STATION
PL IN G INTERVAL
ATE I OF THE STATION
AST SAMPLING INTERVAL
S. IN STATE I OF STATION
PLING INTERVAL
E IN STATE I IN STATION
PLING INTERVAL

I OF PASS. LEAVING
PLING INTERVAL

I OF PASS. LEAVING
PLING INTERVAL
S. IN STATE 1

PLING INTERVAL
I OF PASS. LEAVING

PLING INTERVAL

1ST ICS ON VEHICLES IN STATION LINK (SL) STATES
KNSST NUMBER OF VEHICLES ENTERING STATE I OF SL J

KM SL /IE DUPING THE LAST SAMPLING INTERVAL
K MSST NUMBER OF VEHICLES LEAVING STATE J OF SL J

KMSL/I2 DURING THE LAST SAMPLING INTERVAL
KMSST NUMBER Or VEHICLES IN STATE I OF SL J

KMEL/I2 AT THE END OF THE LAST SAMPLING INTERVAL
K MS ST MAXIMUM NUMBER OF VEHICLES IN STATE I ON SL J

KM SL / 1 2 DURING THE LAST SAMPLING INTERVAL
K Mb: ST INTEGRAL OF VEHICLE-TIME IN STATE I O N SL J

KMSL/ 1 4 DUR- IN G THE LA ST S AM PL IN G IN rn VO < AL
K MS ST S UM 0 F T i MES GF VEH I C LE S LE AV 1 NG ST AT E 1 ON S L

KM SL/ I 4 DUR IN G THE LA S T s AM HL IN G IN TERV AL
K MS P > 1 M AX I M un; TIME OF VEH IC LE c LEAV 1 NG STAT E I ON S L
KM SL/ I 4 DUR IN G THE LA ST s AM °L IN G IN TE RV AL

K MS ST A VERA GE NUM5 ER OF V EH 1C LE S IN STA TE I ON SL J

KMSL/R 4 DUR IN G THE LA ST 3 AM PL IN G IN TERV AL
K M S ST A VERA GE TIME OF VEH IC LE S LE AV ING STAT E I ON S L
KM SL/R 4 G UR IN G THE LA ST s AM PL IN G INTERV AL

J

J

I ST ICS ON TRIPS IN TRIP LINK (Tl) STATES
KMTST NUMBER Or TRIPS ENTERING STATE I OF TL J

KMIL/I2 DURING THE lAST SAMPLING INTERVAL
KMTST NUMBER OF TRIPS LEAVING STATE 1 OF TL J

KMTL/I2 DURING THE LAST SAMPLING INTERVAL
KMTST NUMBER OF TRIPS IN STA1E 1 OF TL J

KM TL/

1

2 AT THE END OF THE LAST SAMPLING INTERVAL
KMTST MAXIMUM NUMBER OF TRIPS IN STATE 1 ON TL J

KM TL / 1 2 DURING THE LAST SAMPLING INTERVAL
KMTST INTEGRAL OF TRIP-TIME IN STATE I ON TL J

KMTL/I4 DURING THE LAST SAMPLING INTERVAL
KMTST SUM OF TIMES OF TRIPS LEAVING STATE I ON TL J

KMTL/I4 DURING THE LAST SAMPLING INTERVAL

3-49

Table 3-1. Global Variables -- SCZ (Page 47 of 58)

Z TTiv. TL

ZTT AN

<

ZTTATL

KMTST MAXIMUM TIME DF TRIPS LEAVING STATE I

kMTl/ 14 DURING THE LAiT SAMPLING INTERVAL
KMTST AVERAGE NUMBER GF TRIPS IN STATE i ON
,<MTL/R4 DURING THE LAST SAMPLING INTERVAL

KMTST AVERAGE TIME OF TRIPS LEAVING STATE I

KMTL/R4 DURING THE LAST SAMPLING INTERVAL

ON TL J

TL J

ON TL J

ZTFNE

Z T H NL

ZTPNI

^ TP.vlN I

Z T P T I N

Z TP STL

ZTPMTL

ZTPAN I

2 PATL

ICS ON PASS. IN TRIP LINK (TL

)

STATES
KMTST NUMBER OF PASs. ENTERING STATE I OF TL J
KMTL/T2 DURING THE LAST SAMPLING INTERVAL

KMTST NUMBER OF PASS. LEAVING STATE I OF TL J
KMTLXI2 DURING THE LAST SAMPLING INTERVAL

KMTST NUMBER CF PASS. IN STATE I OF TL J

KMTL/I2 AT THE END OF THE LAST SAMPLING INTERVAL
KMTST MAXIMUM NUMBER OF PASS. IN STATE 1 ON TL J

kMTL/12 DURING THE LAST SAMPLING INTERVAL
KMTST INTEGRAL OF PASS. -TIME IN STATE I ON TL J

KMTL/U DURING THE LAST SAMPLING INTERVAL
KMTST SUM OF TIMES OF PASS. LEAVING STATE I ON TL J

KM TL / I A DURING THE LAST SAMPLING INTERVAL
KMTST MAXIMUM TIME OF PASS. LEAVING STATE I ON TL J
KMTL/I4 DURING THE LAST SAMPLING INTERVAL

KMTST AVERAGE NUMBER OF PASS. IN STATE I ON TL J

KMTL/R4 DURING THE LAST SAMPLING INTERVAL
KMTST AVERAGE TIME OF PASS. LEAVING STATE I ON TL J

KMTL/P 4 DURING THl LAST SAMPLING INTERVAL

THl. FOLLOWING STATISTICS DO NOT rlT INTO THE ABOVE SCHEME
ANJ ARE REFERRED TO AS MISCELLANEOUS

2 M

S U3 3 C R IP

i

2S0/R4 MISCELLANEOUS STATISTICS; THE FIRST
218 OF THESE ARE USED TO GENERATE THE
PERFORMANCE SUMMARY FILE BY THE OP

CAPACI TY (—VCAP

)

1 VEHI CLE CA
2 AVERAGE VE
3 AVERAGE V£
4 AVERAGE V'E

o AVERAGE VE
6 AVERAGE VE
7 AVER AGE VE
S NUMBER OF
9 NUMBER OF

1 0 NUMBER OF
1 1 NUMBER OF
I 2 NUMBER OF
I 3 NUMBER OF
1 4 NUMBER OF
15 number OF
1 b NUMBER OF

HICLE LOAD
HICLE LOAD
HICLE LOAD
HICLE LOAD
HICLE LOAD
HICLE LOAD
VEHICLE
VEHICLE
VEHI CLE
VEHICLE
VEHICLE
VEHICLE
VEHICLES

ENTERING STN FROM GUIDE WAY
ENTERING STN FROM MODAL INPUT BEFORE
ENTERING STN FROM MODAL INPUT AFTER
LEAVING STN FROM GUIDEWAY
LEAVING STN FROM MODAL INPUT BEFORE
LEAVING STN FROM MODAL INPUT AFTER

ENTERING STN FROM GUIDEWAY
ENTERING STN FROM MODAL INPUT BEFORE
ENTERING STN FROM MODAL INPUT AFTER
LEAVING STN FROM GUIDEWAY
LEAVING STN FROM MODAL INPUT BEFORE
LEAVING STN FROM MODAL INPUT AFTER
REJECTED AT INPUT RAMP

VEHICLES ACCEPTED AT II^UT RAMP
EMPTIES GOTTEN FROM LOCAL STORAGE

3-50

Table 3-1. Global Variables — SCZ (Page 48 of 58)

i 7 NUMBER OF
1 S NU MB - R G F

19 NU *(BL R OF
2 0 NU.'.OEk Or
2 1 NUMBER OF
2 2 N‘J 7ydR OF
2 o NU MB K OF

EMPTIES GOTTEN
EMPTIES GOTTEN
7 R IPS ARRIVING
TRIPS BOARDING
TRIPS DESOARD1NG TO
TRIPS DEBOARDING TO
PASSENGERS ARRIVING

FROM UPSTREAM SLS
FROM ELSEWHERE IN NET
AT BOARD GUEUE

LEAVE
TRANSFER
AT BOARD GUEUE

24 NU M3 _ R OF PASSEN GE KS BOARD INg
2 5 NO M3 eR OF P A S S E N oti K S DLBOARD ING TO LEA VE

2o N J MB E R OF PASSEN GER3 DE3GARD ING TO T RANSFE R
SlTYPE ME A N i N G

1 IR
2 IQ
S O (THE DEBOARD73UARD / JOI NT EVENTS

CAN APPEAR ON L V QN THIS TYPE)
4 OQ
5 OR
6 S -

7 IS
S SI
9 DS

1 0 SO
1 I UL
1 2 3L
13 GL
14 MI B
15 MIA
1 s MO B

17 MO A

1 8 UN US E D
2 7— *4 4 r 0 • \ t AC H •SLTYPE* AVERAGE ft OF VEHICLES IN SL OF THAT TYPE
4 3— 62 FOR EACH fc C

>vLTYPE* MAXIMUM ft OF VEHICLES IN SL OF THAT TYPE
oj- 6 0 FOR EACH • SL TYPE • A

V

ERAGE TIME SPE NT IN SL OF THAT TYPE
8 1 - 9& r OR EACH •SLTYPE • MAXIMUM TIME SPENT I N SL OF THAT TYPE
99-1 1

o

FOR EACH •SlTYPE* AVERAGE n OF VEH IN SL QUEUE Or THAT TYPE
1 1 7-13 4 FOR. EACH • SLTYPE • MA XI MUM ft OF VEH IN SL QUEUE OF TH AT T YP E
1 3 S— 1 S 2 FOR each *SiLTYPE* AVERAGE TIME SPE NT 1 N SL QUEUE OF THAT TYPE
153-170 FOR EACH •SLTYPE* MAXIMUM TIME SPE NT IN SL QUEUE OF THAT TYPE
17.-173 FOR EACH TL AVERAGE ft OF TRIPS I N TL
174-176 FOR EACH TL MAXIMUM ft OF TRIPS IN TL
177-179 FOR c AC H TL AVER AGE TIME SPENT IN TL
130-132 FOR t A C H TL MA XI MUM 7 1 ME S PE NT IN TL
183-135 FO.< EACH TL AVERAGE ft OF TRIPS IN TL QUEUE
136—138 FOR EACH TL MAXI MUM ft OF TRIPS IN TL QUEUE
139-191 FOR EACH Tl AVERAGE TIME SPENT I N TL QUEUE
192—194 FOR EACH TL MAXI MUM TIME SPENT IN TL QUEUE
195-197 FOR EACH TL AVERAGE ft OF PASSENGERS IN TL
1 9o-20 0 FOR EACH TL MA XI MUM ft OF PASSENGERS IN TL
20 1-203 FOR EACH TL AVERAGE TIME SPENT IN TL
2 0<+—2 0 6 FOR EACH Tl MAXI MUM TIME SPENT IN TL

Table 3-1. Global Variables -- SCZ (Page 49 of 58)

207—209 FOR EACH TL AV AGL Z OF PASSENGERS IN TL QUEUE
2 1 0-7 1 2 FOR EAlH XL 'AA X I MUM A OF PASSENGERS IN Tl_ QUEUE
2 i J» —2 1 5 FOR £ AC H TL AViiiAOL T I ME SPENT IN TL QUEUE
2 2 o-2. 1 3 FOR EACH TL MAXIMUM T I ME SPENT IN TL QUEUE

2 1 9 U v 3ZR Or T R IPS RE JE CTED AT TICKETING LINK

3-52

Table 3-1. Global Variables — SMAXSIZE (Page 50 of 58)

COMP I LE-T I NE MAXIMA:
TnE rOLLu'MNG VARIABLE NAMES DEFINE THE MAXIMUM NUMBER CF ENTITIES
AVAILABLE WITHOUT RECOMPILING. ARRAYS ARt DIMENSIONED USING THESE
VARIABLES® THEY £RE PREPROCESSOR VARIABLES AND ASSIGNED VALUES IN
ONE CENTRALLY LOCATED MEMBER*

NAME VALUE DESCRIPTION - MAXIMUM NUMBER OF I

K MV 2 0 0 VEHICLES THERE CAN BE IN THE SIMULATOR SIMUL-
TANEOUSLY

KN V 1 20 1 KMV+1

KMT 1000 T R I PS THERE CAN BE IN THE SIMULATOR SIMULTANEOUSLY

KMX IdOO XT NS (= KMV-i-KMT+NO . OF SYSTEM SERVICE TRANSACTIONS)

KMCLT A 1 G 0 0 ENTA IES IN CLOCK TABLE

XM.MSGS 10 o MESSAGES OF ANY KIND THAT CAN BE ISSUED BEFORE
TERM I NAT ION

KMMSG

i

i u G INFORMATION MESSAGES BEFORE TERMINATION

KMM5GW t> WARNING MESSAGES BEFORE TERMINATION

KMMTY r 1 U G ANY ONE MESSAGE THAT CAN BE ISSUED PRIOR TG

KMSL 5 0 ST AT I ON L INKS

K MR 20 ROUTES

K MR T 1 00 E NT R IES IN SCHEDULED ROUTE LIST (PVALST)

KMS 1 0 0 ENTA IES IN STATION ROUTE ASSIGNMENT TABLE (PRASGN)

K ME V° 1 0 ENTA IES
LIST

IN USER'S ORDERED EMPTY VEHICLE PRIORITY
OF WHERE TO PUT EMPTIES (PVEPR) C=2)

K M 5 vP 1 0 ENTR IES
FOR E

IN USER'S ORDERED LIST OF WHERE TO SEARCH
MP TIES (PVSPR) (=3)

KMNMD 50 ENTR I ES IN NETWORK MERGE DELAY DISTRIBUTION (PNMDDT)

KME VD 5 0 ENTR I ES IN EMPTY VEHICLE DELAY DISTRIBUTION (PEVDDT)

K MS LE 200 ENTR I ES IN EVENT LIST (SLEVL)

K MS L D 200 ENTR 1 ES IN DOWNSTREAM SL LIST (SLDSLJ

3-53

Table 3-1. Global Variables — SMAXSIZE (Page 51 of 58)

K Mi>L'J

KV.TL

K Mr LA G

KMbLDS

KMASYN

K MT F

K -A V F 1

k y R a w

K N.f-tDR

<. Y I AT

k y m p

K MN T

K MN S T

K,NojT

K MTbT

k mTLZ

N

KMSLC a p

20 0

3

300

20

1 3

2 4

o

I 5

100

100

ENTkIES IN UPoTkEAM SL LIST (SLUSL)

TRIP LINKS

DBUG FLAGS = ENTRIES IN A FLAG
TERMINATION

ENTkIES IN THE ORDERED DOWNSTREAM SL LIST (ASLLST)

NUMBER OF THE INPUT UNIT FOR ASYNCHRONOUS DATA

NUMBER OF THE INPUT UNIT FOR THE TRIP FILE

NUMBER OF THE INPUT UNIT FOR THE VEHICLE FILE
ASSOCIATED WITH SOURCE 1- (THE UNIT NUMBER
ASSOCIATED WITH SOURCE 2 IS ASSUMED TO BE KMNF1+
AND THE UNIT NUMBER ASSOCIATED WITH SOURCE 3 IS

ASSUMED TO BE KMNF1+2*)

NUMBER OF OUTPUT UNIT FOR RAW STATISTICS FILE

NUMBER OF TYPES OF HEADER CARDS (USED BY IP ONLY)

ENTRIES IN USER'S INTERARRIVAL TIME DISTRIBUTION

ENTRIES IN NUMBER OF PASS ENGER * S DISTRIBUTION

100 ENTRIES IN NUMBER OF TRIP'S PER VEHICLE DISTRIBUTI

NUMBER OF STATION-WIDE STATISTICS sta tes

3 NUMBER OF STATION LINK STATISTICS STATES

3 NUMBER OF TRIP LINK STATISTICS ST ATES

30 NUMBER OF VEHICLES IN A TRAIN

1 0 0 NUMBER OF VEHICLES ON ANY STATION LINK

3-54

Table 3-1. Global Variables -- SODCLS (Page 52 of 58)

S GD CL S : DECLARE <COMMON AREAS UNIQUE TO THE SOP

VAR NAME DIM TYPE DESCRIPTION

(BLANK) COMMON
A 40000 E4 BIN AREA

BASIC
LOC

COMMON
5 14 CONTAINS POINTER TO BINS IN *A* ARRAY

SYS COM
a LINES

COMMON
14 NUMBER OF LINES

KNSL - 14 NUMBER OF STATION LINKS

KSTL - 14 NUMBER OF TRIP LINKS

KNR - 14 UNUSED

XSB - 14 U N U SE D

KNA — 14 UNUSED

C jjOCK - 14 SAMPLE TIME

CSANPL — 14 SAMPLE INTERVAL IN CU

CSIZE — 14 CU PER MINUTE

PEEFS — LI INDICATOR FOR PERFORMANCE SUMMARY DATA COLLECTION

SUB CO
JN

MM ON
14 NUMBER OF BINS SET

I TO T - 14 NUMBER OF WORDS IS BIN AREA

K li
- 14 NUMBER OF WORDS IN USE

JK - 14 UNUSED - I N IT TO 0

A FLAG 99 LI INTERMEDIATE OUTPUT CONTROL FLAGS

SYSCM 1

SUMS
COMMON

14 UNUSED

NOME — 14 UNUSED

SUM SL — 14 NUMBER OF STATION LINKS

NOMR — 14 UNUSED

V CAP - 12 VEHICLE CAPACITY

STN HO 400 12 U H USED

KTYPE 2 12 STATION LINK TYPE

OUTPT
TITLES

COMMON
1800 14 OUTPUT STATISTIC TITLES. EACH TITLE IS COMPOSED

Or' 16 CHARACTERS ALLOCATED TO 4 FULLWORDS. THE
ENTRIES IS THE TABLE ARE ORGANIZED SEQUENTIALLY
BEGINNING WITH THE FIRST TITLE FOR THE FS T
VARIABLE IN A PARTICULAR MAJOR CATEGORY.

3-55

Table 3-1. Global Variables — SODCLS (Page 53 of 58)

MAJC 400 12 MAJOR CATEGORY OF REQUESTS

SCAT 120 12 TABLE 0? CUMULATIVE IRDICIES FOR RETRIEVING
1o CHARACTER TITLES FOR OUTPUT STATISTICS.
EACH VALUE IN THE TABLE CORRESPONDS TO A
COLUMN IN 21COTAB AND CONTAINS THE CUMULATIVE
COUNT OF THE NUMBER OF VARIABLES THAT PROCEEDED
THAT CATEGORY TYPE.

PERFM
P SUM 11

COMMON
4 00 R 4 SUM OF PERFORMANCE SUMMARY VALUES OVER REPORT PER.

PSIN 400 R4 MIN OF PERFORMANCE SUMMARY VALUES OVER REPORT PER.

P MAX 400 a 4 MAX OP PERFORMANCE SUMMARY VALUES OVER REPORT PER.

N SAMP — 14 COUNT iOF NUMBER OF SAMPLES IN REPORT PERIOD.

FORMAT
I FORMS

COMMON
400 12 OUTPUT FORMAT NUMBER FOR A PARTICULAR REQUEST

SOIDX
AMNAME
AMFLAG

COMMON
4,8

4
LI
LI

PARSED NAME FIELDS FROM PARK LIST
INDICATES WHICH FILES WERE USED

HISC
ZCAP 5 12 5 INPUT -LIKE VARIABLES TO BE PASSED TO

PERFORMANCE SUMMARY

3-56

Table 3-1. Global Variables — SODEFS (Page 54 of 58)

COMMON A^tAS CONTAINED IN SODCLS 0 ZODCLS WITH FULL
u> I ME MSlCNS FOR USE IN THE MAIN ROUTINE 'SGUTPT* . SGDCLb D

ZGDCLS ARE USED IN ALL OTHER ROUT INES AND CONTAIN SMALLER
DUMMY DIMENSIONS IN THEIR DECLARATIONS. THIS ALLOWS A USER
TO CHANGE THE DIMENSIONS OF SOME OF THE MAJOR ARRAYS IN THE
OP AND RECOMPILE ONLY SOOTPT AND NOT ALL THE OTHER ROUTINES
THAT USE THE ARRAYS (S INCE IN THESE OTHER ROUTINES THESE
ARRAY- ARE DECLARED WITH JUST DUMMY DIMENSIONS WHICH INDICATE
TO THE FORTRAN COMPILER JUST Th'aT IT IS AN ARRAY (IT GETS THE
DIMENSIONS FROM THE OTHER DECLARATION). THE DIMENSION TAKEN
IS DECIDED BY HAVING SOUTPT FIRST IN THE LINK EDIT.

VAR NAME D I M TYPE DESCRIPTION

TnE ONLY
ZREv/JE

D IFF ERE

N

12.400
T D I MENS IONS ARE

:

OUTPUT REQUEST STORAGE TABLE

LOG 4 0 0 BIN AREA
REQUEST

LU'CATIUN FOR SIN ASSIGNED TO SPECI F I C

KTY^E KM oL LINK TYPE DESIGNATIONS FOR SL *S

the only
KMSU3

A LO I r I ON S ILGCAL TO SOUTPT) ARE!
I NI T=4b0

KAMEL • > 14 CONTAINS NAMES UF THE VALID HEADER
ACCEPTED BY DSM

CARD 1 YP ES

FORMS 2,0 14 CONTAINS REQUEST CARO KEYWORDS

W IDTHS 40 0 R4 HISTOGR'AM CLASS INTERVAL FOR CORRESPOND INC REQUEST

SYMBOL 4 I 4 CONTA I NS 4 PLOTTING SYMBOLS

COMMON N
T SER

AM ES
14 CONTAINS • TSE K ’

STATS - 14 CONTAINS »S TAT •

PLOT - 14 CONTAINS » PLOT *

SYSTEM - 14 CONTAINS • £ YST •

TRIh — 14 CONTAINS •TRIP*

L 1ST — 14 CONTAINS •LIST*

HIST 14 CONTAINS •HIST *

STh 14 CONTA INS •STN *

3-57

Table 3-1. Global Variables ZCAMSG (Page 55 of 58)
I

ZC.AMS(>

:

L OR MESSAGE DATA

V A R N A M E D I M DE SC. K IP1 I GN

KNMSG 0/ I A NUMBER OF MESSAGES ISSUED DURING A RUN, SY ClASSJ
1 = INFORMATION
2 - WARM NG
3 - SEVERE

N ySgS 0,1\1 TOTAL NUMBER OF MESSAGES Or ANY CLASS
ISSUcD DURING A RUN

M SoL K MMSGS
/I 2

MESSAGE NUMBERS ISSUED DURING RUN

N'SGlN KMMSGS
/ I 2

NUMBER Or REMAINING MESSAGES Or THIS TYPE
ALLOWED PRIOR TO TERMINATION

T w r\ M -/L 1 INDICATOR TO SIGNAL TERMINATION DUE TO EXCESSIVE
MESSAGES

M.FLAG -/LI ERROR PROCESSING IN PROGRESS INDICATOR TO HALT
RECURSIVE ERROR PROCESSING

M SG 1 D -/LI ID OF MODEL BEING EXECUTED (1-DSM OUTFUT PROCESSOR)

Table 3-1. Global Variables -- ZODCLS (Page 56 of 58)

ZODCLS : DECLARE COMMON AREAS COMMON TO ALL OP

VAR Name dim TYRE DESCR IPTT ON

REQUEb
Z RE DUE

CON. NON
12,0 14 OUTPUT PROCESSOR REQUEST TABLE

1 ENDS
I END

CDM M CuN

14 NUMBER OF REQUESTS ENTERED

R E A DE R

M STAR

T

COMMON
I 4 START OF REPORT PERIOD IN CU

MS T DP - 14 END OF REPORT PERIOD IN CU

m so r — I 4 RAW STATISTICS FILE UNI 1 NUMBER

M SC' T X - I 4 RAW STATISTICS FILE UNIT NUMBER

MNAME - R £ ALPHA DESIGNATION Or RECORD TYPE (HE ADER .FOLLOWER

)

C US EC - R 4 CU PER SEC

M CLDC K - 14 TIME VALUE OF CURRENT RAW STATISTICS RECORD
PROCESSED

BEING

EOF - 14 END OF FILE ON RAW STATISTICS FILE

MBYTES - 12 NUMBER OF BYTES IN FOLLOWER RECORD

MHO LL - 12 NUMBER OF FOLLOWER RECORDS

M TYPE - 12 TYPE OF FOLLOWER: RECORDS

TABLES
MAI NT

A

COMMON
1 2 0 I 4 MAIN CATEGORIES TABLE. IS INDEXED BY TYPE NUMBER,

ENTRIES FOR MAIN CATEGORIES ARE BCD. A ZERO
ENTRY IMPLIES NO MAIN CATEGORY HAS BEEN DEFINED.

Vi COT At. 1 20 I 2 TABLE OF SU3CATEGOR IES. EACH COLUMN CONTAI NS
ALL OP Tht bUbCATEGUR IES CORRESPONDING TO
A CERTAIN TYPE NUMBER. THE COLUMN ENTRIES IS

SPECIFIED BY THE ENTRIES IN M COTA B • A ZERO
COLUMN ENTRY INDICATES THE END OF ThE LIST.
SINCE COLUMNS ARE CONTIGUOUS IN CORE. #ROWS
IS NON-LIMITING SO LONG A MCOTAB CONS1DERES THAT
ONE SUBCATEGORY USES >1 COLUMN.

3-59

Table 3-1 Global Variables — ZODCLS (Page 57 of 58)

MSUTAb 15,13 14

M SO 1 Y P 16,18 12

MAiCh C G.V M LN

M AT TAd 1 20 12

MAT , A X 120 12

CONTAINS THE STATISTIC REQUEST NAMES.

CONTAINS THE STATISTIC TYPE NUMBER. SEE SOD AT

COMPUTATIONAL match table init. from MATTAX

MATCH TABLE. IS INDEXED BY TYPE NUMBER
CODES ARE :

-1 - DO NOT KNOW
0 = DO NOT WANT'
X - SO WANT. X IS A DGSITIVE INTEGER WHICH

SERVES AS A POSITIVE INTEGER TO THE
XT h ROW OF T HE REQUEST TABLE

M 1 SCEL LAN ECUS

:

RMS GO -
IN ZODCLS. BUT NOT IN ANY COMMON

14 MAX NUMBER OF UNIQUE STATISTICS
DEFINITIONS IN SODCLS;iNIT TO

; OVERRID DEN BY
270

3-60

Table 3-1. Global Variables — ZSYSMAX (Page 58 of 58)

C DMP I LL-T I ME MAXI MA :

THE FOLLOWING VARIABLE NAMES DErINE THE MAXIMUM NUMBER Or ENTITIES
AVAILABLE WITHOUT RECOMPILING. AnRAYS ARE DIMENSIONED USING THESE
VARIABLES. THEY' ARE PREPROCESSOR VARIABLES AND ASSIGNED VALUES IN
ONE CONTRAlLY LOCATED MEMBER.

NAME VALUE DESCRIPTION - MAXIMUM NUMBER OF:

KKtoSGS 25 MESSAGES OF ANY KIND THAT CAN EE ISSUED BEFORE
TERMI NAT I ON

KMMSG I 15 INFORMATION MESSAGES BEFORE TERMINATION

K VM SG V; 15 WARNING MESSAGES BEFORE TERMINATION

KMMTYP 10 ANY ONE MESSAGE THAT CAN BE ISSUED PRIOR TO
TERM 1 NAT I ON

3-61/3-62

SECTION 4. DEBUG TOOLS

Tables 4-1, 4-2, and 4-3 list the associations between debug flag
numbers and code segments for the IP, MP, and OP, respectively. This
intermediate debug output is turned on by the use of a FLAG card in the

IANDD.RNTIM input to each processor. The format of the FLAG card is

given in the User's Manual. Turning on such flags causes one or more
debug messages to be printed. Each message contains the flag number, a

short line of text, and the name (first six characters) and value of as

many as ten variables.

4-1

Table 4-1. Input Processor Debug Flags

ROUTINE ENTRY/EXIT FLAGS BODY FLAGS

SICUMP 250
SIGIAT 253 266
SINPUT 200

290
296

SITDGN 255 265
SIVDGN 256 261
SMRNG 83 262

SMRSEL 270

Table 4-2. Model Processor Debug Flags (Page 1 of 2)

ROUTINE BODY FLAGS ENTRY/EXIT FLAGS

SAASYN 103 143
SACKR 44 74

SADADD 45 75

SAFAIL 104 144
SAFINM 132 117

SAFINS 101 141
SAFLAG 109 149

SAINIT 20 70

SAMAIN 102 142

SANFEL 47 77

SANMDL 108 148
SANTSA 48 78
SANXTN 49 79

SAPFEL 50 80

SARFEL 51 81
SASAMP 127 157

SASCTL 161 160
SASPRM 121 151
SATORG 105 145
SATRD 120 150

SAUCTL 181 180

SAUPRM 125 155
SAVORG 106 146

SAVRD 107 147

SAWT IX 52 82

SAZNIT 128 158
SERROR 42 72

SMBRD 169 168
SMDBRD 191 190
SMDETR 195 194
SMENTR 197 196
SMEUM 193 192
SMLTIM 173 172
SMNXST 171 170
SMTABG 189 188
SMDIVF 126 156
SMDIVO 123 153
SMDIVS 124 154
SMRNG 53 83

SMRSEL 54 270
SSLEAV 167 166
SSMOD 175 174

4-3

Table 4-2. Model Processor Debug Flags (Page 2 of 2)

ROUTINE BODY FLAGS ENTRY/EXIT FLAGS

SSMODA 163 162
SSMOBB 177 176

SSMODN 165 164
SSTEST 179 178
SUMOD 185 184
SULEAV 187 186

SZHDR 131 118
SZINT 129 159

SZSTAT 122 152

SZZERO 130 119

4-4

Table 4-3. Output Processor Debug Flags

ROUTINE

DAYTIM
SHIST
SLIST
SONTIX
SOPSUM
SOUTPT
SOWTIX
SOZNIT
SREAD02
SREAD03
SREAD04
SREQTLU
SSETUP
SZPLOT
SPREAD
ZABIN
ZBINL
ZBNCHK
ZDBIN
ZDUMBIN
ZERROR
ZFLAG
ZGRAPH
ZHEADER
ZHIST
ZLIST
ZMNMX
ZRCLEAN
ZREQU
ZSHIFT
ZSKIPFO
ZSTORE

FLAGS

1

1

5

1 ,20

1

1

1

1

1

50

16

1

1
, 3,40

1

9

98
40

1

4-5/4-6

SECTION 5. SUBPROGRAM LOGIC TABLES

Tables 5-1, 5-2, and 5-3 contain subprogram name, entry points,
called by calls, and functions for the subprograms of the IP, MP, and
OP, respectively.

Table 5-1. Input Processor — Subroutine Logic Table (Page 1 of 3)

SUBROUTINE LOGIC TABLE - INPUT PROCESSOR

T T~cin:n!rT7
SI'

j" CALLS
I

1 FTTN’CTTUD
I

T^hY7TT~T"TJITTTTI YHIYuT
1

TXTTHTS'
SISWRT

j

TT'HT“T)RTE“Xr?I;
,

“TTY'E“nF~IiI'YT J

E RE vj EFhU R
'

CUIFT “7Tn:TFT:WrrF5XTTuTI7~FYWI7TtT7-(TT''
‘

(D SAFLAo SEVERS ERROR MESSAGE. COUNT
S1CHCK MSG OCCURRENCES 3T TYPE AND MSG
SINE HR NO. AND TERMINATE WHEN COUNT(S)
SINPUT
SIREPT
SISCFG
SITDGJ8
SIVDG

W

EXCEED LIMITS.

IDBCIIT

T^in:??Y~T~^Trr?FT‘
i

(i)
i

1 ZTTPUn
I GDIPF 4
f
GD1PH4

|
GDIPX4

T^iriir^Ta“UTnTTrT)E?'i^Ei)" mrur
|
AREA USING USER SPECIFIED

|
FORMAT.

TrrarTrainrTnrmsTTT

1 GDTFDT_TTTDTPT4~7
I (D I

I

T
_
T?iTni~7ixrpr' w Z)THj~ ctdiphiti

i

T
I

T“bTin:YX7-T"T7I5T?rT‘
I (1) I

aUIToh "1 N I) DO 'u

(1) I

TTTYFUT~!~ST7Tin T
I I

!TTY'TT~7aiTT!rF
_
irTTA

_
Tr
TTir‘(TlTTF'

DATA

SAC OS N SACOMIT TTSTrirsY"TF~iinrmp
-1

to
-
in stjits

IDENTICAL ORDERING OF INPUT
COMMON AREAS. NO ROUTINE CALLS
SACOSH; IT ACCOMPLISHES ITS
FUNCTION 3Y BEING LINK EDITED
AHEAD OF A NT RTN WHICH USES
THE COMMONS BEING ORDERED.

T
I

I

T“3TFFrC r~h‘TF!7STr"i STTIFTIT
-
! TRSTOTT "srr"7DTC5"70H“TiJTEir^Tim,r

OUTPUT.

1 S 1A DDR T ~ SIaDDR
1 1

1 1

1 1

STTTTL'T~T STSRDD
|
PRUDTDY^DTFirESS 7niTT:i7T_TrC

—
STS- T

| |
TEM CHARACTERISTICS COMMONS SO

|

|
THEY CAN BE WRITTEN BY IP TO

|

| |
STRUCTURED DATA FILE j

|
S xB -i ax T

|
S I S A u D

1 1

DTAITD h J [~TTT7D~7niDR;ESS AND LET7CTTT~TT?~STTT^T
| |

TEM CHARACTERISTICS COMMON AREA |

j

T"DTS¥RT~ DITFTJT T
-
DDTTID [“YDTTI'^'S YSTEFl

-
CTTTnTDirTETnrSTTCD

- T
| |

STRUCTURED DATA FILE |

I^TYDCir^

1

1

3 I CiiCK sTNTTTT
(

rnThOTi

|
SIN ERR

1

1

DATA. SIT INITIAL VALUES FOR
MP. CONVERT INPUT TIMES FROM
SECONDS TO CLOCK UNITS.

S ICUM?
S IT EG N

!

ST V DG N
|

CON YEFT 'FDODIFT LI T Y DlSTK IB U - T
TION TO CUMULATIVE PROBABILITY
D 1STRU3 UTION

.

1 STDTai T S TDiT/r]
1

“SIVDDD“'| ‘ D7TD1TD
|
SUESEL

' COMPUTE TRAIN 1 NTnH ARFTYAL TIDDT
FOR VEHICLE DEMAND GENERATION. |

5-2

Table 5-1. Input Processor ~ Subroutine Logic Table (Page 2 of 3)

T“mX7TT“l STTTTT
| |

TlH: TxTJtTZir~7 ^TTlTSTKm:TriFr^KK~~
{

| |
SIADDK

1 KTEKS FOR USER INPUT. INVOKE
| | SIPLST

|
ROUTINES TO ESTABLISH ADDRESS

| |
AND SIZE OF SYS CHAR COMMON

| t |
AREA FOR 11? AND DETERMINE USER

|

| | | |
SPECIFIED FILE MEMBER NAMES.

S IAS Ah |
oISNAfl

1

|
SINN AM

SIPLSI | DA XT in
|
SCAN PAuM FIELD CHARACTER

|
STRING, SEPARATE INTO FILE

| |
MEMBER NAMES, AND WHITE LOAD

| |
MODULE DATE AND TIME.

SINPOT
j |

LIST USED MEMBERS IN INDEX.

|
SilLKR

1
SINE KK

[
SICHCX

|
ERROR

| |
SIN PUT

|

| | |
S1REPT

[

I
CUEFi IP M sG N 0 . AND S EV ERTTI^T

CODE AND CALL ERROR TO WRITE
THE MESSAGE.

|

5 1 J u r
(

o 1 ? u r

1

1

1

1

1

1

1

1

1

1

1

1

1

S 1 P A R M |
jk Y TIM

|
ERROR

|
NDBOlv

|
SAFLAG

|
SICHCK

|
SIINIT

|
SINERR

|
SI REFT

|
SISCPG

|
SIS WET

t
SITDGN

j SIVDGN
|
SPIEL

|
SI w NAM

1' CGNTTloL'IFPU?" PEOCESSTEg - T
READ USER INPUT
GENERATE TRIP STRUC FILE
GENERATE 7EH STRUC FILE
GENERATE SYS CHAR STRUC FILE

SxPAriM [SIPARM
|
SYSTEM

| SIN PUT
|
JOB

|

| (
STEP

|

| |
TASK

|

r~^T7T~Tnn/RESS ' 3?"?7rEfS“PXEi:j T
PASSED BY SYSTEM. CALL MAIN
IP ROUTINE.

|

1

S 11 A l T
J

S1 M N AM
1

!

pass pA iuM fiELd AnD paRm FIeLd {

LENGTH TO ROUTINE WHICH DIVIDES!
FIELD INTO FILE MEMBER NAMES
AND VLH SOURCE.

|

SJ.PSAV
|
SIPSAV

|
COMMON

| |
PROVIDE STORAGE LOCS (COMMON

| |
DEFINED I |

S1PSAV) FOR ADDRESSES OF I?
| |

IN
| |

COMMONS, SYS CHAR COMMONS, AND
| |

SIINIT
| |

END OF SYS CHAR COMMONS.

LODCoM
1

1

S illi I T Cause above addresses to le
LOADED INTO SIPSAV BY EXECUTING!
RETURN TO CALLER. I

S xRE PT
|
SLEEP T |

SIN PUT
|

ERROR
| | | SI CUM P
| | |

SIN ERR
t 1 1

WRITE INITIAL CONDITIONS REPORT
|

FOR STATION LINK CHARAC., SYS-
|

TEM CHARAC., AND SERVICE CHARAC
|

CHECK PARAMETERS FOR ERRORS. [

Sis CFO
|
SiScFG

I

1

r^TNTTJTH PRIOR
|
BUILD STATION STRUCTURED DATA

|
TABLES FROM USER INPUT. DETER-

|

|
UPSTEM AND DNSTRM LINKS.

|
CHECK USER DATA FOR ERRuRS.

j

|
SIT J GN

1 SU'D ON |
SINPUT | ERROR

|
G IN Eli AT E TRIP ARRIVAL FILE AND

|

| [| |
SICUMP

|
TRIP SUMMARY REPORT. |

| |
SMRNG

| |

i ! 1 1 SMRSEL
| |

SIV DON
|
SIVDGN

|
SINpUT

|
SHrtOR

|
GENLReTE VEHICLE ARRIVAL rl lE

| | |
SlCUilP

|
A ND VEHICLE SUMMARY REPORT.

| | j
S1GIAT

|

5-3

Table 5-1. Input Processor -- Subroutine Logic Table (Page 3 of 3)

I
SMRNG

j
SMESEL

SiiRUG
|

SilRNG SIGHT r^TTriTTATT nHDKHTrSITFHnWIGHT
1

S ITDG N
1
0-1.

1

I
SIVDGN

1 i

1
S MRS EL

1

stgtai
i ~ gm iitg—^TiijT^TrT^T[rD^n?!nnrf^TrrnTiTTi^

|
S ItDG i

(I
TIVE PROBABILITY DISTRIBUTION.

|
SIVDG'I

| |

T"
1

GISTS •

(1)
1

1

rlSIS "T"
1

15aY

T

ill r
1

T
1

GSTGWTGWTTHIITIifTIBHSYSTH T
CLOCK

1

Tracer
(1)

1

1

1

I R A C B R
1

1

1

"IITrTTUT
PGM

|

1

TA 0 R a
TRC3RV
TLC3RR

i

1

1

GET REGISTER AND ARGUMENT
|

T RACE I NF 0 R A A TI 0 N |

1

i

SPIEL
1

sit; put
i

i

1

1

GTH aIGIGWISHES“GCHGIT T
CONTROL AT PGM INTERRUPT TIME |

'TTClT"
(1)

1
GSCGrTT

I
TRAcB a T 1

~PTILT"PGiJ' ILT" H e'ADTIG J

1
"THCTrTV"

1
TRaCBr T 1

PRINT 2 LINrS FOR ARGUMENT (

i
TKcLRa

1
TeACBa T 1

Til !!T ""3 ” IIN1ST '(J'fT'G I!?
-
! EG T

1

1

>: t 1 <"
V_»C C «i. T

1

ENTRY
T

called
i

BY
|

OALL S
I

1

TUGCTIUH T
1

NOTES :

(1) SEVERAL OP THE CS5CTS ABOVE ARE KNOWN BY DIFFERENT SOURCE NAMES.
SINCE OTHER DOCUMENTATION MAY REFER TO SUBROUTINES BY SOURCE
NAME RATHER TUAN CSECT NAME , THE CSECTS WITH THEIR SOURCE-
NAMES ARE LISTED BELOW.

CSECT
ERROR
GDI PEN
GDI PH

4

GDI PS EC

T

CD I P X 4
NDBGR
TIMES

SOURCE MEMBER
S lEi. R OR
XGDIPF4
XGDIPU4
SIGDIP4
XGDIPX4
XNDBOR
DTI MEL

TF.ACBK XTRACoK
TRCBKP X TECBE?

5-4

Table 5-2. Model Processor -- Subroutine Logic Table (Page 1 of 5)

SUBROUTINE LOGIC TABLE - MODEL PROCESSOR

1 jaTTTIT
I

1 ITXxTTT

1 crnrmr-

! crms—rTtnr7mm
I

BY I I

r SnYTITryTTEFb r^^?ITT"n/lTTr!T“TTTTE"TrrYY7?rV
j |

DD/BH/M M/SS
T
I

i

.

ivR c K T7K17u-i

(D
oDITt'"
S AFLAG
SAM AIL
SMB RD
SMDETE
SMENTR
SHTA3Q
S SHOD

A

SSilODE
S SM G D II

SUMol)
SAASYN
SZ3TAT
SACrCR
SAVOHG
SEDIV3
SilDIVF
SAVED
SANMDL
SATED
S A DADD
S A I '> I

T

S APPEL

*IPi!TT vT!ITT‘'F
_
TiTFni?!TXTTDTr7 wXT^riinT7~TTH'

LSACBK SEVERE ERROR MESSAGE. COUNT
MSG OCCURRENCES BY TYPE AND MSG
MO. AND TERMINATE WHEN COUNT (S)
EXCEED LIMITS.

T'GDIP-—

J

GTFTP4
SECT

|

1

1

TTHToTT TTllRUh
t
&DIPP4

|
GD1PH4

| GD1PX4

rzTKu iNTouSEirDEPTTEirnMT r
AREA USING USER SPECIFIED
FORMAT.

1 G DIPE 4 1 GD1PF4
|
GDIP 4

i (i)i i

“FTJL
-
PULL 'IOEirGDi:? DAT A T

I GD1PE4
|
GDIPH4

|
GDI >4

| |
READ HALE WORD GD1.P DATA

I (1) l 1 1 1 1

GDI PA4 T 'TDIPX4
1 (1) 1

GDIP4 READ BYTE SIZE GDiP DATA

T NDBOe

T

NDbOE J S AASY N OD1P4
i

(i)
i i i

READ FORMAT DATA FOR GDIP
|

DATA
|

PbEiiDO
|
PSLUbO

|
GDIP4

|

(1) 1 1 1

” XPSTTIDO -MAIN" TIN TRY T

J SUDOGO
1

G DTP4] r iHI'TIALTZE FSEUDO-X/O
|

SAASYN
|
SAASYN

1

1

1

1

1

1

1

S A M A i N f ERROR
NDdOR
SARA IL
5 A FLAG
SAC KPT
SAPFEL
CAi'ORG
SAVORG

A SY nCHRONuUS DA ITTKEAD

T SACKS
I
SACRR S ANSA V

1 1
CHECKPOINT S RESTART PROCESSING

1 ~SA'cxp?
-
r'S’7T;7y i 1

7inrTirTTTiFCKiR7TiTTnTFruinT
| j

S AMAIN
I I

5-5

Table 5-2. Model Processor — Subroutine Logic Table (Page 2 of 5)

|
SAEEST

|
SAINIT

I I

ERROR
|
READ CHECKPOINT RECORDS S RESET!

SAPEEL
|
FILES

i
oACoMTrvsfcC'Oiiim

i 1

1 t

1 1

1 1

1 1

1 1

rJ o i ji | « 0 - »

E

1

f

1

1

1

1

n"C*ED""B7 ”TV~1^TTKP~ TO" 1HSTF77; 7
IDENTICAL ORDERING 0? INPUT

|

COMMON AREAS. NO ROUTINE CALLS 1

SACGRN; IT ACCOMPLISHES ITS
|

FUNCTION BY BEING LINK EDITED
AHEAD OF ANY hTN WHICH USES

|

THE COMMONS BEING ORDERED.
f

|
S A D A D D

1

1

S A DA uD SANoA;
|

j.R-.Oa
j

X.a iX^LIZ^IN IU l area ADD-.eSIKS|

| |
SANDTA

|
SAINIT

|lilt READ INPUT DATA INTO INPUT
COMMONS

|

|
SAFA XL

|
SAFA IS

|
SAASYN

|
iACK.PT

|
FAILURE ACTIVITY PROCESSING

1 1 1 1 1 1

|
SaI'INE

|
S A FI NM

|
S Ai*I Ax H

| |
WRITE ONLine MODEL REPORT S

|

| | 1
SASAMP

! 1
FINAL MODEL REPORT

|

I SAF-lNS
|
SAFINS

|
S A ft A X R

|
SANTIY

| | |
ERROR |

FIX UTTAGE fTTPORT
J

|
S AFLAC

|
SAFLAG

|
SAASYN

|
ERROR

|
SET FLAGS FOR INTERMEDIATE

| | | { |
OUTPUT.

I

satntt SAM AIN SANTSA I3TTI AL 1 2 E sIluLATION
SAKE SI-

SAND TA
SAELAG
MD3QB
SANXTN
SA REEL
SANMDL
SAPFEL
ER R 0 E
SADPTX

"STimr TI23T7nr
SS MOD
SSTEST
SSLEAV
F.RjuOE
SU MOD
SET A BO
SAIN IT
SAASYN
SAS A.-:P

SACK PT
SATED
SAVED
SA V OrG
SAVED
SAPFEL
SAFI KM
SAFINS
SZINT

TTiT^ajTThOirirrcrF

T SXTTTEITT T~srnT7TT r" T'“THTTTTLIYTrFUTTnrETFT^TrrS LToT 7

| S AN H Do. "T‘"^mrurr |
S A

I

N

I

T |
•nRP.OH |

MODEL V ARIABLE INITIALIZATION 1

[
S A N S A V T' SANS A V "1 SANTSI |" ’SALADD 1 "X siV CK PT i) S 75" T Eft DATA "REA I>

"

1

1 1 1 1
SACKR j

PROCESS ES 1

1 S AN Tlx "T*“STlTTTT
-T OPEr. T* SA Z A lN

|
NAME STRInGTHTT I

1 i 1 SYSTEM 1 ! INDEX FILE
5-6

Table 5-2. Model Processor — Subroutine Logic Table (Page 3 of 5)

T'SAITPTX’
I

i TTjT^7rT"S^lT^r
I I

"STDITT

3 ATFT

T

3TFTTT

3337IT

T73 s~337SER~73HTrsT3T7S~T?7
SrtWTIX

T7TT~BTBTE1T3T3TTTJB“TREX'
ADDRESSES

1

r“337AT3~T“33FT3T 33T3T T“TT*7.T-.r’:lLAI57TrTjITI“B~r77nT:-~T
ABLE LISTS

{

TT33r73“37 ?3T331337773371133 fSTpPTT 37tab~
S SMODB
SUMOD
S AREST
SAM AIM
5AASYN
SAVED
SATED

sBBTAT'
EEROE

S AsAeP" 377T3T~T --’T—
T-

• xj j. j x

j
S Z n D A

|
SZZERO

3I33I33I3I7T“P7U3E33T73'S rt A ,‘i i i l-'

bhi'OAb

T SiiT'r. l>

T' 337333'

33T37GT"3
'A 7 ATT~rVZ3333

|
S A A S Y K I

SUMOD

3ri3D""

3X777(7

T~3333T—T~7r73

777i~:nr7T7T73“77T7

3I3ir !nrT?"TBTTB~TSl?- fit:

377337 f
SAASYA |

EK r.37
SZSTAT
SS '10D

7U7-l~37I37TF37ri3T3I3'

1 377177 37777
"j

S3X3T7 |“ T7737 3BI'B“VFilTCrE~FErB7~YBHICI3“Fir“

SAW i j_ a 337777
1

sTTTTTI ["' 131 T IH

'

P3377TT

SAWTIY

3337TT'

|
SAFINS

|

T~33T77T f

TiFTnr^iF^TTTrrnrnTi^iFrFH
STRING, SEPARATE INTO FILE
M EMBER NA HE 5 , AND WRITE LOAD
MODULE DATE AND TIME.
LIST USED MEMBERS IN INDEX.

T
I

T

SZ3E30"
SZBDk

TTTrTTBrrZT“BTTriBTT3FTr"71FT7B
BLES

"I
S"i3Ri> S M B R j X s sIMuDB f sM r3 EL

j E F; t\ 0 R

-"ST—

r

r 7TT¥tr*73T7~F7nnir77

'T
I

T

1 SxTTrBTF
i

srnTFTir
I I

1 s377DB j 33337
I i

33373I33rinm:LF~TTrOF
CLE OF A TRAIN

T~s;:i>ivr
I

I

sBdTV7~T'3HTT;BT"T

I

TTuiT-
SMDI VO
SMDIVS

33TBri33rETn'FI33FmT!~I3Fi7
_TB313 T

CLE OF A TRAIN I

TFTBTTlT

T“sTnTT7TT
I

T~3FETTTT
I

T^BTNir
I

333173' T“373ITT
-
!"

I I

3FBTT3“T*333173
CLE OF A TRAIN

|

*| B3ri3I3“73in3T3“13UT'T3rD“T'En'r:::

T
CLE OF A TRAIN I

SnEN' TR
(

SsT!oj>i "T EKrO'k
I I

3I7T(7FI33rE3TUT3~T33?r'i373“7'FTri3T
CLE OF A TRAIN

33375 T“FFTls S L" T
I I

3I7B3Tr3“FFTTTjT3“TTT3 T313B3T33B 7—T
0 - 1 . [

33FsrrrT"3TR33Er 37773“
S E T A B o
SSMODA
S SMODB

3373 T3on3r~37T73U7~37TTB~T7“rTTT[TL3~T
1’IVE PROBABILITY DISTRIBUTION.

5-7

Table 5-2. Model Processor — Subroutine Logic Table (Page 4 of 5)

sMTiTEo T Smil T'ESrOh 1 PmT7TErT
-
ir TIiIF“FOir LOAr DTTJT?

»

f | |
SSMODA

|
SAPFEL

|

1 1 1 1
SflHS EL

| |

|
U^A^S-T*T"^Sra^T7

-
T“¥D¥II T ntHE | T1TTT~ArrilT?“'SY3TE!T~HIATUS MET T

1 1 1 1 1
WORDS

|

T ^EXETv1 TMEEETT7 T"SAET1.n TMZETAT-
1
" PTTuTTEMIFGT a”"7EHTCLL7TE1T3 T(III SSfiOD

|
LEAVING A SL

|
sshod

1
SSNOD

! 1

SAM h In
|
SSMODA

|
MODEL THE VEHICLE ON ITS

|

|
SSllODN

|
CURRENT STATION LINK 1

|
SSL ODD

| f

EEEDE^
|
ESMDOA

1

1

1

1

SSMOD
j

SZ STAT
|
SMTABO

| SKENTR
j

S H R S EL
| ERROR

vehicle processing after a
STATION LINK EVENT

S b 1 1 0 D b SSiiODS SSdOb
|

srJDKTfi
f
SMBRD

| SZSTAT
|

SMRS EL
}
ERROR

| SAPFEL
|

SriRSEL

VEHICLE PrOcLSSING rEFOrL A
|

STATION LINK EVENT |

1

1

1

I

1

|
SSMUDN

|
SSMODN

1 1

S3 SOD
I

sZSTAi'
|
VEHICLE'S NEXT SL EVENT

|

(
ERROR

|
DETERMINATION

|

|
S S I HS T

| 3STES i |
S A s a I ft | SNblVF

| S J A 11ON LINK EN IK i TESTING J>

| | | | i
NEXT LINK DETERMINATION

|

|
GUMOu

1

1

1

S U 1.1u D SAMaIN
|
SZSTAT

|
ERROR

|
SAPFEL

MODbL THE TRIP ON ITS CURRENT
TRIP LINK

|

1

|
SAdbR

|
SZ.1DK

|
S ASALE

| |
WRITE SAMPLING LEADER RECORD

|

|
SAINT

|
SAINT

1 1

SASAMO
| |

CALCULATE INTEGRALS, AVERAGES,
|

j |
& MISCELLANEOUS STATISTICS

|

S A S T A T SZSTAT
|
SAM AIN

|
ERROR

|
S3LEAV

|

| SSMODA
t

|
SSMOD3

|

SSMODN
|

1
S' UN OD J

|
SAPPEL |

CULLiCr STATISTICS
1

1

1

1

1

1

| SZ'ZEivO |
SZ_ERO

1 1

S AS AMP i |
RESET STATISTICS

SAZNIT
| | I

1 TIMES T TIMES'
1 (1)1

UTTITTE I r^TT“b71Y
_
I^D~E7TE“?TTn^

_
EYET:EF T

| |
CLOCK !

T hA C b K
|

TR hC bK
(D 1

1

LRRuRi.
|
TKCK I

|
G ill LuGlSTER AN D A R GU M E rT J

| TP.CBKV
|
TRACE INFORMATION

|
TRCBKR

| j

SPIEL
|
SAIN IT

| |
SET INTERRUPT FLAGS TO GET

| | |
CONTROL AT PGM INTERRUPT TIME

|

T~TTrrr?~T"Ti< cEKT~T“TTTCd“T THFirrTnrFsrTTrr^EXDTTO T

T-TRZr^J7~T~^TJ:Z^T—\ r^TTrrT"TrT^"yL)TT
_
ll.nTl!T^TT T

r^crr?nr
_
T^^^rir'i ^^^^“rTiiis^CTruiTTriG

5-8

I

Table 5-2. Model Processor -- Subroutine Logic Table (Page 5 of 5)

|
CSECT

1

|
xii A 1 ii Y

r

i

|
CALLED

|
CALLS

1
BY

|

|
E U N CTJLO E

1 1

NOT 1

5

(D SEVERAL OF THE CSECfS ABOVE ARE KNOWN BY DIFFERENT SOURCE NAMES
SINCE OTHER DOC 'JilEN ?A TION HAY REFER TO SUBROUTINES BY SOURCE
NAME RATHER THAN CSECT NAME , THE C SECTS WITH THEIR SOURCE
NAMES ARE LISTED BELOW.

ERROR
GDI PF4
GDI PH

4

GDIPSECT
GDI EX 4

ND BOH
PSEUDO
TIMES
TRACER
TRCBKP

SOURCE MEMBER
SEREOR
XGDIPF4
X GDI PH

4

SMGD1P4
XoDIPX.4
X A OBOE
X PSEUDO
DTI EEL
XTRACSK
XTRC3K2

5-9

Table 5-3. Output Processor — Subroutine Logic Table (Page 1 of 3)

SUBROUTINE LOGIC TABLE - OUTPUT PROCESSOR

i -cTzz?—TTSTTin—rnnrrrn'io

—

T~~ J-XbTT
I (1) I

1 TTu TT~'|' "TTDT
| |

SHIFT

T“5'TjT~
i n)

ZTTZ7~~T“Zm?oTr
!

Z RE-pU
I
SHIFT

in' E lip

T"17EY7TT"T~17XTm 1 SoTJTTI
j

TThTT;

I !

ToTTTEl.T " TiTTir Z~TTTTT~TD~YT7T^7’
DD/HH/E b/SS

THJ3T3 TUETil" T“^uZ1TT“T~ TIX D(ZT1TT~TITE~'oT0TT7riTTr

1 I7TTTTc j- n 1 UTJT5 1 :<

I (1)1
1 TETTTT'T

-
!
- -- mw"Hir aeett'headeicS"

j. o
{ L i . R 0 1

'

(1) I

I

TTsToTT—

T

ZEE AD
|

A Eli
|

BNC.-iK
HEALER |

R T A L 0 Z
|

ELAD03 |

* rC/i731T

REA 00 R |

SHIFT
|

SKI ~ FG f

SOU TFT |

SEQTLU
i

"Trite ITFUTHTXTToN, rtAr.'NTUG, OF-

SEVERE ERROR MESSAGE. COUNT
MSG OCCURRENCES BY TYPE AND MSG
NO. AND TERMINATE WHEN COUNT (S)
EXCEED LIMITS.

*j" G A T A si

I (1)
TTTTTT7H

—
"1 ZpEjT T

-^ TTT“-rTTTTTT^EinTrrT7J5T

T~HTKTttr‘

J

~dEJVrn~r
I (1) I I

2 PL AD T EnTiOR
I

T"TI1E7~
I (1)

1 -T T- -ri
-

fiiOl T~7;htet—

t

1 EX!Tr*^*1J X TTTTT"

TOTCKE xT“H zT7)ZTr7rZH5 'TOT

"r'FTTTTITTETITGETT'

Zi Jl *-> X

(1
)

r~TETTT~
I (1)

’ITTTa

W J* T .

I\

"T~ZnTET

—

TT^TTIT~'n7T7ffl“G“TX aTTTT?TU7~^T^

T

nrrT ~T~7Tb £73 T~~
1 TEA juz T

I (1) i

7E
7TEj7~T~3TT:~t~T“TTEdt~

I |
STOFLO

TT'Sn"TTT~imTJTJFEE3T3

7I73“!r73TE£^TXTT7TX7:r

1 A E A ID 3 f

I (1) I

EE i\J 0 3 f z EL A

D

T~rrnnj“
|
STOFLO

ITTTirXTTrlUY-ITir^TS’TTsTTUS T
I

1 33717(73
i

ITETTiTT
-
! 777:713'

(
1

)

1 TTTTTTTi

|
STOFLO

"7I73'^T3'37rTR
_mTT3TTur T

I

(i)
i

tit vjt l u p ^ettatj 3 zmroir TIT3337imUTT7ST“G377TETITTuTT”

TTn:iT7n:iprr“GX^A3iE'"TirLrE3
_ '

1 SETUP
(1)

irm—i
zeettj

—

T |
3HT7T

I

T~U~J~7Z~T~T;K IE F O'

"37IT7T“
(
1

)

;7\T OTT TTIlI1^7iTTriT^3Tn37.Gr''AEETGTT~T
MINTS I

T“77T:77/ r

-
EETUs—r^?rrT:^'?'OLLOTT!nr'irErnoirTr

5-10

T

(
1)

1 SjU'TT

Table 5-3.

I

T“5UZTTT

Outp Ut Processor - Subroutine Logic Tabie (Page 2 of 3)

1
~~

*1 TTE T XXE XZ rT'!T TL DD '."CDM OTT3H3IX3
—

~\

3TTXT T^nTni'
i

37X33 T 70ITT7T
SYSTEM |

. I

TtST^ELl'SH' PXFTTXXLD”?^37333=—

T

A BI LI 1 I

?i33“33xbettt^ittd "xdx t ii
'

"?377UKX 377C3 " SUITF/m " 330 CX37X73“Ti c/t* s Ij M

SOTITT
-

T~3(X73uT

303XF3'

303773“T
-”

33TTTT!r"T'TIFFFTT"
|
DUMB IN

|
Z?LA 5

|
BREAD

f zlist
I ZHIST
I
ZPLOT

I ZREQU
j

EREOh
|
SOJPTX

3u3XXX“T“3U7rirTT

SOW TIN
SONTIY

30717 T“TYTTF
I

mr?S VM"?T mU""C:i
,

H n'A 'CT FF T
STRING, SEPARATE I 'I TO FILE |

MEMBER NAMES # AND WRITE LOAD
|

MODULE DATE AND TIME.
LIST USED MEMBERS III INDEX.
WRITE PLRSUM MEMBER NAME IN PS.|

i A

50UTPT
!

SOUTPT |

3uZ7Tr“l 30XTXT

3TO FT’*

(1)

"3Ture

TXIT33~
TO

TXeXTT

3u3tft 3mr
dBIN
ZREQU
BREAD

T7XTTXXXZ77rXUT~33“UIr

READU a |

READ03
|

READOE
|

1^
!.

T“3TCTTIE”UTTiri3TIT
3X7'

(
“FTOirETTJXTS ITT

-BTT

DAYT17
j

="

I |
CLOCK

T

TRACE A.

ID
otxcot E R h OR

|

I

I

~30in~
TRCBaV
TRC3KR

T~7FT“FH; IETFA" -TFTITTHTblTErEcEr
|
TRACE INFORMATION

1 rFxeit
i

3U37TT
I

32T^!TFXFF37T~7XX33-To“033
CONTROL AT PGM INTERRUPT TIME

I AC J Kr
(D

T'TTtCBKI'

T”L7CL3T

TTFC37TFT

TRACER T
'37733733

TTTAETF'K f“~

1 F730T7737“X7T“33AirrTG

1 P7XTr
—
2“XlN 13

' P 07'.' ATTGTnTITNT

T~F rTTJT'O “rXTTFSTDTTO E3“FFO“

1 zxmnr

TTFTAir
1 Z3XTE7

T* XP3AB'

T "5DTTTTTT

333373“!
T~3TTIT3T3“r3Tr3TTT

1 3CT~I3TI7HELT/TT133X7337

T
7

1 Z3XOT
1
33T3T—

1

1

1

S 00 TFT f“3T33X
|
BNCHK

|
BIST

'“HT3T003M~UI]TF7?“03737013 T

i

1 Z3T3T
1
ZLTST r Sou TP T

j
LIST

T" ^ n* r '’T-fTtr?',1 rrr — t * t» -ttt i r tt-t—

-

|

LIST OOTFOT CONTROL
r—rtr"T*n"" ^n ttit^ rrm- ^ Ttntmt""— •"""

1

I (1)

niiEAD
I I I

T~zFF3C 1 37TZ7XT T 3E1DEF"T"TC3313E ' S Y STHT_
nT33TrAT3T3'

5-11

Table 5-3. Output Processor — Subroutine Logic Table (Page 3 of 3)

(1)
1

1

1

1

1

1

1

SOUTPT
ERROR
SETUP
REQTEU
READ02
RE ADO 3
RE ADO 4
RCLEA

H

j

SKIP FO

1

I

1

|
)

1

1

1 VlS i
T

I U lkl-1 ^ U
1

1

ZE^U E"^TTTT
SOUTPT

r LtiR'os
1

BiiCKK

” RTo b ’EYT H a a I> L 1 N <3 f

1 CSelT
1

1

1

“Entry i C A L L E J
BY

T CALLY
1

FUTTcTHTiC
-

T
\

NOTES
CO SEVERAL OF THE CSECTS ABO \TE ARE KNOWN B I DIFFERENT SOURCE NAMES

SINCE OTHER DOCUMENTATION MAY
NAME RATHER THAN CSECT NAME ,

NAMES ARE LISTED SEED*.

REFER TO SUBROUTINES 3Y SOURCE
THE CSECTS WITH THEIR SOURCE

SECT SOURCE MEMBER
ERROR ZEE K OR
TIMES DTIM EL
TRACBK XTRACbK
TEC SKI’ XTRCBKP
ABIN Z ABIN
BNCHK ZoUCHK
DU M DIN ZDUMB IN
GRAPH ZORAPU
HEADER Z HEADER
HIST SHUT
LIST SLIST
MNMX ZENHX
UAD02 ZREAD 02
REA 00

3

Z REA DO 3
EE A DO

4

ZREAD04
SEQTLJ ZEEOTLU
SET n P S SETUP
SHIFT Z SHIFT
SKI PFO Z SKIPFO
STOLE Z STORE
ZPLOT 5 ZPLOT
ZREAD S ZREAD

5-12

SECTION 6. DSM SUBPROGRAM DESCRIPTIONS

This section describes the components of the DSM Input Processor,
Model Processor, and Output Processor. These components include subrouti nes ,

macros , and included code segments . They are identified by their source
library member names. The global variables used in these PARAFOR, ASSEMBLER,
and PL/I components are defined in Section 3. Local variables which are
arguments in the calling sequence of these modules are listed in the

component's Argument Dictionary of each description. All arguments are

assumed to be input only unless "OUTPUT" or "INPUT and OUTPUT" has been
explicitly stated. Other local variables are listed in the Local

Variable Dictionary of each description.

For each local variable the following is provided:

o Variable name : the name by which the variable is known in its

module. Since arguments. may not be named in Assembly Language
routines, an arbitray name has been assigned.

o Pi mens i on : A hyphen indicates that there is only one variable
(a scalar) by the variable name. A number, n, e.g.

, 2, indicates
that multiple variables of that name are defined with subscripts
from 1 to n, e.g., variable(l), variable(2).

o Type : FORTRAN notation is used to identify the type and length
of the variable, e.g., 1*4 = full word integer, R*8 = double
word real number. When a character string or variable name is

an argument, the letter "C" is specified. When the character
string must be a specified length, that too is shown, e.g.,
"T" = C*l.

o Descripti on : A brief definition of the variable is given. If

it is an optional argument in the calling sequence, that is

stated and its default value is given.

In addition to local variables, a description of the module's logic
is provided as are any supporting decision tables and algorithms. The
descriptions parallel the PDL (Program Design Language), which is the
detailed logic of the program making reference to local and global
variables. The PDL is given in Appendix A.

6-1

6.1

INPUT PROCESSOR

This section outlines the subprogram descriptions for the DSM-Input
Processor.

6.1.1 DAYTIM

See subsection 6.2.1, DAYTIM.

6.1.2 ERROR

See subsection 6.2.43, SERROR.

6.1.3 GDIPSECT

See subsection 6.2.52, SMGDIP4.

6.1.4

SACOMN

See subsection 6.2.15, SACOMN.

6.1.5

SAFLAG

See subsection 6.2.20, SAFLAG.

6-2

6.1.6 SIADDR

6. 1.6.1 Identification

o SIADDR - System Characteristics Address Save

o IBM/FSD - July 1, 1977

o Assembler H

6. 1.6. 2 Argument Dictionary

PARAMETER DIM TYPE

Parm 1 A

Parm 2 F

DESCRIPTION

Address of start of System Characteristics
commons (Input)

Length in words of System Characteristics
commons (Input)

6. 1.6. 3 Local Vari able Di ctionary

VARIABLE DIM TYPE DESCRIPTION

ARGA -
F First item in System Characteristics

common area
ARGB F Length in words of System Characteristics

commons

6. 1.6. 4 Description - SIADDR receives the address and length of the System
Characteristics common area and passes them to SISADD where they are
saved for use in the structured data file write of SIBWRT.

6. 1.6. 5 PPL - See Appendix A.

6. 1.6. 6 Decision Tables and Algorithms - None.

6-3

6.1.7 SIBWRT

6. 1.7.1

0

Identi fi cation

SIBWRT - Structured Data File Wri te

0

0

IBM/FSD - July 1, 1977

FORTRAN IV (H Extended) with PARAFOR

6. 1.7.

2

ENTRY

Argument Dictionary

PARAMETER DIM TYPE DESCRIPTION

SISADD ADDR1 LEN1 1*4 System Characteristics structured

LEN1 1*4
data area (Input)

Length (in full words) of System

SISWRT NONE

Characteristics structured data
area (Input)

6. 1.7. 3 Local Variable Dictionary - None.

6. 1.7. 4 Description - SIBWRT has two entry points:

1. SISADD is called by SIADDR to save the address and length of
the System Characteristics common area.

2. SISWRT writes the System Characteristics to the Structured
Data File using the address and length saved by SISADD.

6. 1.7.

5

PPL - See Appendix A.

6. 1.7.

6

Decision Tables and Algorithms - None.

6-4

b.1.8 SICHCK

6. 1.8.1 Identification

o SICHCK - Parameter Checking and Initialization

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended] with PARAFOR

6. 1.8 .
'I Argument Dictionary - None.

6. 1.8.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

DE _ 1*4 Deboard event type (3)

BE - 1*4 Board event type (4)

DBE - 1*4 Deboard/board event type (5)
SE - 1*4 Storage event type (6)

LE - 1*4 Launch event type (7)
IDB — 1*4 If = 1, deboard/board event(s)

found
IVS - 1*4 Event list pointer
IVT — i

—

i

* Points to previous or next even
for a link

IERR - 1*4 If = 1, serious error found.

Terminate
TCNVRT — R*4 Used to convert seconds to cloc

units (CU'/secj

6. 1.8.4 Description - SICHCK converts several groups of input time
parameters from seconds to clock units for the model processor.

o Station link travel time

o Station link headway

o Vehicle headway and spacing

o Vehicle delay time

o Deboard/board time

o Trip link travel time

o Deboard Exit Walk and Transfer Walk Times.

6-8

Following the time conversions, SICHCK verifies that certain station
link-event combinations occur correctly.

o Launch and store events must be last where they occur

o A store event must be the last event on a storage link

o Deboard/board events and downstream station link must occur
together.

Finally, SICHCK finds the source station links if the station
configuration has not done so.

6. 1.8. 5 PPL - See Appendix A.

6. 1.8. 6 Decision Tables and Algorithms - None.

6-6

6.1.9 SICUMP

6. 1.9.1 Identi f i cati on

o SICUMP - Cumulative Probability Distribution Conversion

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6. 1.9.

2

Argument Dictio nary

PARAMETER DIM TYPE DESCRIPTION

DISTR DENTS R*4 Probability distribution to be

converted (Input)

DENTS 1*2 Number of entries in distribution
(Input)

DERR 1*4 Return code (0 = no error, 1 = error,

invalid probability distribution)
(Output)

DMEAN R*4 If = 1 on input, SICUMP returns mean
entry number of probability
distribution (Input and Output)

6. 1.9.3 Local Variable Di ctionary

VARIABLE DIM TYPE DESCRIPTION

DMEVAL - R*4 Used to compute mean entry number
of distribution

6. 1.9. 4 Description - Beginning with distribution entry two, SICUMP adds
each entry to the previous one and saves the result in the current entry
so that the final entry is the sum of the whole distribution. If the

mean is requested, SICUMP computes the sum of each entry number times
the entry value. If any entry is less than 0 on input or if the sum of

the entries is greater than 1.0, processing stops and an error indicator
is returned to the caller.

6. 1.9. 5 PPL - See Appendix A.

6. 1.9. 6 Decision Tables and Algorithms - None.

6-7

6.1.10 SIGIAT

6.1.10.1 Identification

o SIGIAT - Vehicle Interarrival Time Generation

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.10.2 Argument Dictiona ry - None.
6.1.10.3

Local Variable Dictionary

VARIABLE DIM TYPE

DENTY - 1*2

DHSTAR - R*4

DHLOGN - R*4

DESCRIPTION

Entry no. in user IAT dist.

(from SMRSEL)
Intermediate value in computation

of IAT

Intermediate value in computation
of IAT

6.1.10.4

Description - SIGIAT computes vehicle interarrival time in one

or two ways as requested by the user.

o User distribution option

SIGIAT calls SMRSEL to sample the user interarrival time

distribution.

o Exponential distribution option

SIGIAT gets a random probability from SMRNG. If the probability is

less than the probability of minimum headway, the interarrival time is

set to minimum headway. Otherwise, interarrival time is computed as

fol 1 ows:

IAT = MINH -
MEANH - MINH

1 - PM IN FI

Where:

IAT = Interarrival time

MINH = Minimum headway

MEANH = Mean headway

6-8

PMINH = Probability of exactly minimum headway

PRAND = Random probability.

In both cases if the environment is synchronous, interarrival time

is really interarrival slots and S I G I AT multiplies the slots by slot
length in seconds to get a time value.

6.1.10.5 PPL - See Appendix A.

6.1.10.6 Decision Tables and Algorithms - The following is the derivation
of the interarrival time algorithm used above in Description.

Where:

h = Minimum headway (input by user as DVHDWY)
m

h = Mean headway (input by user as DVLMDA)

F
n

= Probability of exactly minimum headway (input by user as
U

DVPMIN)

R = Random number uniformly distributed between 0 and 1

h = Interarrival time = headway for specific vehicle.

This is derived from the following equation given in Adaptive Meraing
Under Cap- Follower Control by S. J. Brown, Jr. (APL/JHU CP038/TPR029
October 1974), Page 49.

F(h) = 0, 0 < h < h
m

F(h) = F
q

- (1 - F
0

) 1 - e
-

(h - h) (1 - F n
)'

v
nr

v
0_

y

(h - h)v m'

(2)

h < h oo

Where:

F(h) = probability that vehicle enters with headway < h. Equation
(1) is derived from (2) by substituting R for F(h) and solving for h.

6-9

CUMULATIVE

FREQUENCY,

F(h)

The graph of (2) has the form:

C

(
h - h

m)n- F
o)

(h-h
m)

HEADWAY, h (= INTERARRIVAL TIME)

In the special case where F~ = 0 (the fraction of vehicles arriving
at exactly minimum spacing is zero), equation (2) reduces to

F(h) = 1 - e h < h oo
m

—

= 0
>

0 < h < h
m

(3)

given in Martin and Whol Traffic System Analysis
,
page 507. This has

the graph

In the special case where h^ = 0, equation (3) reduces to

h

h

F(h) - 1 - e (4)

6-10

the standard exponential interarrival time distribution with graph

6-11

6.1.11 SIINIT

6.1.11.1

Identi f i cation

o SIINIT - Input Initialization

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR
6.1.11.2

Argument Dictionary - None.
6.1.11.3

Local Variable Dictionary - None.6.1.11.4

Description - Depending on the nature of the parameter being
initialized, SIINIT either clears the parameter or sets it to a default
value. SIINIT also controls the processing that establishes the address
and length of the System Characteristics commons by calling LODCOM which
sets up a common (SIPSAV) containing the address and length and SIADDR
which passes the address and length to SISADD where it is saved for the
structured data file write.
6.1.11.5

PPL - See Appendix A.

6.1.11.6

Decision Tables and Algorithms - None.

6-12

6.1.12 SIMNAM

6.1.12.1 Identification

o SIMNAM - Parameter List Scan

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.12.2 Argument Dictionary

PARAMETER DIM TYPE DESCRIPTION

COUNT - 1*2 Length of character string in PARM
field of EXEC statement (Input)

STRING COUNT L*1 PARM field of EXEC statement (Input)

6.1.12.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

PTR - 1*4 Index to STRING array

6.1.12.4 Descri ption - The PARM field of the IP EXEC statement contains
seven fields separated by commas. They are:

1. Module Name

2. System Characteristics input member name

3. System Characteristics member name

4. Runtime member name

5. Trip Demand member name

6. Vehicle Demand member name

7. Source of vehicle demand indicator.

SIMNAM separates the PARM field into seven fields by scanning the
list for the field delimiter -- a comma. Each field is saved for later
IP use in writing Run Index data.

6.1.12.5 PPL - See Appendix A.

6.1.12.6 Decision Tables and Algorithms - None.

6-13

6.1.13 SINERR

6.1.13.1 Identi fi cation

o SINERR - Error Message Generation

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.13.2 Argument Dictionary

PARAMETER DIM TYPE DESCRIPTION

IMSG - 1*4 Message ID (Input)
ISEV I* 4 Message severity (Input)

1 = information
2 = warning
3 = severe (termination)

6.1.13.3 Local Variable Dictionary - None.

6.1.13.4 Description - SINERR calls subroutine ERROR to write the error
message and if the severity code indicates, terminate the run.

6.1.13.5 PPL - See Appendix A.

6.1.13.6 Decision Tables and Algorithms - None.

6-14

6.1.14 SINPUT

6.1.14.1 Identi f i cat i on

o SINPUT - Input Processor Control

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.14.2 Argument Dictionary - None.

6.1.14.3 Local Variable Di cti onary

VARIABLE DIM TYPE DESCRIPTION

AEND - 1*4 1

EOD
1 - Indicates end of GDIP

i nput
ATYPES 15 1*4 Character fields representing all

possible input data types. Used
to check validity of a GDIP input

type
DVRELS 1*4 Number of stations in a route

(user input) (, 1 ,

)

I END 1*4 Used in reading VEH demand data.

PTR to end of 1 RTE's components

in list of route lists (DVRSCH

)

(,1, KMRT)
IERR 1*4 If = 1, serious error found in

trip or vehicle input data
(not used)

INVAL 1*4 Temporary loc for maximum number
of stations entered in VEH demand

data (,1, KMS)

6.1.14.4 Description - After calling SIINIT to initialize system paramete
SINPUT reads System Characteristics input into the system common areas.

Next, SINPUT reads the Runtime File decoding and processing each valid
entry. Any nonzero time Runtime input is copied to the Runtime output
file for the Model Processor. Any input not in time sequence causes
termi nati on.

6-15

SINPUT uses the runtime OPTION data to determine which of the main
IP functions are required.

o Trip demand generation

o Vehicle demand generation

o Model Processor setup.

If trip demand generation is requested, SINPUT reads the Trip Demand
Input and Description File containing the trip demand generation data and
calls SITDGN to generate the trips.

If vehicle demand generation is requested, SINPUT reads the Vehicle
Demand Input and Description File containing the vehicle demand generation
data and calls SIVDGN to generate vehicles.

If the Model Processor (MP) preparation is required, SINPUT calls
several MP setup subroutines.

o SISCFG to do station configuration

o SICHCK to do parameter checking

o SIREPT to write the Initial Conditions Report

o SISWRT to write the Structured Data System Characteristics File.

SINPUT calls SIWNAM to list members in the index.

6.1.14.5 PPL - See Appendix A.

6.1.14.6 Decision Tables and Algorithms - None.

6-16

6.1.15 SIPARM

6.1.15.1 Identification

0 SIPARM - Parameter List Processor

0 IBM/FSD - July 1, 1977

0 Assembler H

6.1.15.2 Argument Dictionary

ENTRY PARAMETER DIM TYPE DESCRIPTION

SIPARM PARMAD - A Address of parameter list from

EXEC statement (Input)
SIPLST None

6.1.15.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

PARMAD A Address of parameter list from EXEC

statement
ARG1 A Address of length of character string

in PARM field of EXEC statement
ARG2 A Address of character string in PARM

field of EXEC statement

6.1.15.4 Descripti on - SIPARM has two entry points each with a separate
functi on.

1 . SIPARM is the first program to receive control when the DSM IP

is executed. It saves the address of the parameter list for
future processing and gives control to SINPUT, the main IP

processor.

2. SIPLST is called by SI I N IT later in the IP. It passes the
length and content of the parameter list to subroutine SIMNAM
where the list is scanned and divided into member names of

I/O files.

6-17

6 . 1 . 15.5

6 . 1 . 15.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-18

6.1.16 SIPSAV

6.1.16.1
Identification

o SIPSAV - -.Input and System Characteristics Commons Address Save

o IBM/FSD - July 1, 1977

o Assembler H

6.1.16.2

Argument Dictionary - None.
6.1.16.3

Local Variable Dictionary - None.6.1.16.4

Descripti on - SIPSAV saves in a common (SIPSAV) the starting
and ending addresses of the Input Processor Commons and the System
Characteristics Commons generated at Link Edit time by the following
overlay structure:

OVERLAY
BEGCOM Start of IP Commons

OVERLAY
Input Processor Commons

OVERLAY
IPSYS

OVERLAY
System Characteristics Commons

End of IP Commons
Start of Sys Char Commons

OVERLAY
ENDCOM End of Sys Char Commons

The Linkage Editor generates the addresses (BEGCOM, IPSYS, ENDCOM)
surrounding the two sets of commons. Entry point SIPSAV (equivalent to
common SIPSAV defined in S I I NIT) defines storage for the addresses; and
entry point LODCOM causes SIPSAV (i.e., the addresses above) to be
loaded into core. SIBWRT later uses IPSYS and ENDCOM to locate the System
Characteristics Commons which it writes to the structured data file.

6-19

6 . 1 . 16.5

6 . 1 . 16.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-20

6.1.17 SIREPT

6.1.17.1 Identi f i cati on

o SIREPT - Initial Conditions Report

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.17.2 Argument Dictionary - None.

6.1.17.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

Stati on Link Types

BL - 1*4 Bypass station link (12)
D - 1*4 Dock (3)
DS - 1*4 Dock to storage (9)
IQ - 1*4 Input queue (2)
IR - 1*4 Input Ramp (1)
IS - 1*4 Input to storage (7)

OQ - 1*4 Output queue (4)
OR - 1*4 Output ramp (5)
SI - 1*4 Storage to input (8)
SO - 1*4 Storage to output (10)
MOA - 1*4 Modal output after processing (17)
MOB 1*4 Modal output before processing (16)

List of List Pointers

DPTR - 1*4 Index to downstream links
EPTR - 1*4 Index to events
UPTR — 1*4 Index to upstream links

IERR - 1*4 If = 1 ,
severe found. Terminate

6-21

Output Character Arrays

LKEVNT "* 1*4 Character representation of link
events

LKTYPE 17 1*4 Character representation of

station link types
TPLINK 9 1*4 Character representation of trip

link types. 3 entries=l trip
link type

CYES 1*4 'YES' and 'NO' for link
avai 1 abi 1 i ty

CNO - 1*4

IAVAIL - 1*4 CYES or CNO for link availability
OFFON 2 1*4 'ON' and 'OFF' for station type
LKORDR 2 1*4 'PRIO' and 'FIFO' for dequeue

order
UDLNKS 17 1*4 Used to count occurrences of each

link type
ERFLDS 13 *l

—

1

List of fields in error in station
link data

Page Control

LINREM - 1*4 Lines remaining on page
LINE - 1*4 Current line number within page
PAGE - 1*4 Current page number

Time Conversions from Clock Units to Seconds

CVRSN - R*4 Used to convert CUs to secs (CU ' s/

PTIMA R*4 Used to hold trip link time in

seconds from CUs

PTIMB - R*4 Same
TWALK - R*4 Same
PSECS R*4 Used to hold DBD/BD times in

seconds from CUs
SSECS - R*4 Same
ESECS - R*4 Same
LHDWYA R*4 Used to hold link times in seconds

from CUs

LHDWYB - R*4 Same
LTRAVL - R*4 Same
ISAMP 1*4 Used to hold sampling intvl in

seconds pcom CUs

ICHK - 1*4 Used to hold CKPT intvl in seconds
from CUs

6-22

Miscellaneous indices where to Columns are Printed

C1LIM 1*4 Where 2 cols of data are printed,
the limit of column 1

C2STR " 1*4 Where 2 cols of data are printed,
the starting index of column 2

RT1 ' 1*4 Indices to route output using two

columns
RT2 - 1*4

DNLINK - 1*4 Upstream link ID

UPLINK - 1*4 Downstream link ID

DERR - 1*4 Error return from SICUMP (0=no error)
DES1 - 1*4 Index to route assignment table
IADL " 1*4 Index to events, upstream links,

or downstream links
ISTR - 1*4 Start and end Ptrs to a route list in

I END - 1*4 List of route lists array (PVRLST)

6.1.17.4 Description - SIREPT writes and validates each of the following
DSM initial conditions:

1. Vehicle, trip, and train length capacities

2. Deboard/Board method and times

3. Vehicle launch delay

4. Static entrainment option

5. Vehicle sources

6. Service type

7. Empty vehicle and merge delay

8. Empty vehicle management

9. Vehicle headway and spacing by route

10. Route lists and route assignments by destination

11. Station link summary of upstream/downstream links, events,
diverge functions, type, capacity, and travel time

12. Trip link summary

13. Simulation control summary.

6-23

If SIREPT finds errors in any of the initial conditions, it writes
error messages within the report and terminates the run at the end of
the report.

6.1.17.5 PPL - See Appendix A.

6.1.17.6 Decision Tables and Algorithms - None.

6-24

6.1.18 SISCFG

6.1.18.1 Identi f ication

o SISCFG - Station Configurator

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.18.2 Argument Dictionary - None.

6.1.18.3 Local Variable Dictionary

VARIABLE DIM TYPE

Pointers to Fields in Input Array

LT - 1*2

TT - 1*2

LL - 1*2

CAP - 1*2

EV1 - 1*2

EV2 - 1*2

EV3 - 1*2

EV4 - 1*2

EV5 - 1*2

FN - 1*2

ORD - 1*2

HT - 1*2

ET - 1*2

Event Types

HEVENT - 1*2

TEVENT - 1*2

DEVENT - 1*2

BEVENT - 1*2

J EVENT - 1*2

SEVENT - 1*2

LEVENT - 1*2

DESCRIPTION

SLCFIG (13, KNL)

Link type fid (1)
Link travel time fid (2)
Link length fid (3)
Link capacity (VEH) fid (4)
Event 1 fid (5)
Event 2 fid (6)
Event 3 fid (7)
Event 4 fid (8)
Event 5 fid (9)
Diverge function fid (10)
Upstream link ordering fid (11)
Headway fid (12)
Headway fid (13)

Headway event type (1)
Travel event type (2)
Deboard event type (3)
Board event type (4)
Joint board/deboard event type (5)
Storage event type (6)
Launch event type (7)

6-25

IDs of Certain Link Types Found

BLFLK - 1*2 ID of bypass link
DBFLK - 1*2 ID of board dock
DDBFLK - 1*2 ID of deboard dock
DLFLK - 1*2 ID of downstream station link
DSFLK - 1*2 ID of dock to storage link
IQFLK - 1*2 ID of input queue link
IRFLK - 1*2 ID of input ramp link
ISFLK - 1*2 ID of input to storage link
MIAFLK - 1*2 ID of modal input after processing link
MIBFLK - 1*2 ID of modal input before processing link
MOAFLK - 1*2 ID of modal output after processing link
MOBFLK - 1*2 ID of modal output before processing link
OQFLK - 1*2 ID of output queue link
ORFLK - 1*2 ID of output ramp link
STFLK - 1*2 ID of storage link
SIFLK - 1*2 ID of storage to input link
SOFLK - 1*2 ID of storage to output link
ULFLK

Count of

1*2

Certain Link Types

ID of upstream station link

IQCNT - 1*2 Number of input queue links
DDBCNT - 1*2 Number of deboard docks
DBCNT - 1*2 Number of board docks
OQCNT - 1*2 Number of output queue links
CCT - 1*2 Pointer used to build list of lists tables
LINK - 1*2 Link number
ORDSEL - 1*2 Upstream link ordering option (1 of 6)

RTTIM - R*4 Link travel time (CUs)

RVEL - R*4 Link velocity (ft/sec)
SEQ - 1*2 Used in upstream link ordering
SQGSM 18 1*2 Each 3 entries specifies 1 of 6

ways of ordering upstream links
USLOR CsJ

XI

—

1

ID of link with launch event

6.1.18.4 Description - As a result of reading the system characteristics
data, the station configuration parameters are read into an IP named-Common
area SLCFIG. Each link definition prepared by the user consists of

parameters describing the station link in terms of the following
attributes:

Link Definition Attributes Description

Repetition Factor Standard GDIP field

Link Type Numeric code for type link

6-26

Link Definition Attributes

Link Travel Time

Link Length

Link Capacity

Link Events (five maximum)

Link Diverge Function

Link Order for Dequeue

Link Headway Time

Link Headway Entrainment

Descripti on

Time in seconds to travel link

Length of link in feet to compute a

travel line based on station velocity

Capacity in vehicles per link

Ordered events to occur on link

Numeric code to select desired
diverge function for link

Ordering of link for dequeue numeric
code to select order

Time in seconds to travel the headway
zone

Time factor in seconds per vehicle
in train

The SLCFIG station link parameter values are used to build the

structured data required by the DSM-MP. The processing performed and
the resultant structured data prepared in the process is described in

the following steps.

1. Establish the number of station links entered and set the

runtime number of station links KNSL.

2. For each link travel time equal to 0, compute travel time
from link length value x station velocity. When both travel
time and link length are zero, then travel time is set to

zero. Otherwise, all time values whether given or computed
are converted into corresponding clock values prior to

building the travel time table SLTTIM.

3. For each link, the capacity parameter value is used to build
the capacity table SLCAP.

4. For each link, headway times are used to build the headway
zone travel time tables SLHTA and SLHTB.

5. For each link, the link type value is used to build the

link type table SLTYPE.

6-27

6. For each link, the link event value sequence is used to build
the event sublist table and a sublist pointer table for
each sublist in the sublist table SLEVL and SLEVP, respectively.

7. For each link, the link diverge function value is used to build
the diverge function table SLDIVC.

8. For each link, the process computes and builds the system
pointer value and upstream link ID for the link sublist in

SLUSP and SLUSL, respectively. The link IDs are ordered by
the value selection given in the ORDER parameter. There are

six possible order combinations for the three link types (Main
SL, Storage SL, and Modal SL) that occur upstream from another
link. Upstream links are defined in Table 6-1.

9. For each link, the process computes and builds the downstream
pointer and downstream link sublist SLDSP and SLDSL, respectively.
Downstream links are defined in Table 6-1.

6.1.18.5 PPL - See Appendix A.

6.1.18.6 Decision Tables and Algorithms - Options for ordering of upstream
links where

GW = Guideway link

ST = Storage link

MO = Modal link

OPTION ORDER

1 GW ST MO

2 ST GW MO

3 MO GW ST

4 GW MO ST

5 ST MO GW

6 MO ST GW

6-28

Table 6-1. Link Connectivity

Upstream Links Link Type Downstream Links

UL IR IS, MOB (IQ or DOCK)

SI, IR, MIB, or UL IQ DOCK (D)

IQ, or IR, SI, MIB, or UL DOCK (D) only DOCK (B)

DOCK (D) DOCK (B) only DS , MOA OQ or OK or DL

IQ or IR, SI, MIB, or UL DOCK (D/B) DS, MOA OQ or OR or DL

Dock (B) or Dock (D/B) OQ OR or DL

SU, MIA OQ or Dock OR DL

DS, IS ST SI, SO

IR IS ST

ST SI IQ or DOCK
Dock (B) or Dock (D/B) DS ST

ST SO OR
-1 UL BL, IR or IQ or DOCK
UL BL DL

BL, OR or OQ or Dock DL -1

-2 MIB IQ or Dock
-3 MIA OR

IR MOB -2

Dock (B) or Dock (D/B) MOA -3

Mnemoni c-Def inition

IR -- Input Ramp OQ -- Output Queue DS -- Dock-to-Storage

IQ -- Input Queue OR -- Output Ramp SU — Storage-to-output

Dock (D) -- Deboard ST -- Storage UL — Upstream Station Link

Dock (B) -- Board IS -- Input- to-Storage BL — Bypass Station Link

Dock (D/B) -- Deboard/
Board

SI -- Storage-to-input DL — Downstream Station Link

MIB -- Modal Input
Before

MIA -- Modal Input
After

MOB -•- Modal Output Before

MOA -- Modal Output
After

b-29

6.1.19 SITDGN

6.1.19.1 Identification

o SITDGN - Trip Demand Generation

o IBM/FSD - July 1, 1977

o FORTRAN IV (H Extended) with PARAFOR

6.1.19.2 Argument Dictionary - None.

6.1.19.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

EXPN _ 1*4 Exponent, IAT character indie
USER - 1*4 User IAT character indie
TYPE - 1*4 Either exp or user IAT character indie
DIATMN - R*4 Computed mean of input user IAT dist.
DTERM - 1*4 If = 1, serious error found, terminate
DTGNER 10 1*2 Indicators for 10 errors checked

for in trip generation
DTIMNA — R*4 Actual mean of user IAT dist.

Computed as trips are generated
DTPMNA — R*4 Actual mean trip size. Computed as

trip gen'd
DTPREV - R*4 Time of previous trip
DTRPMN - R*4 Input mean trip size
DTSCNT - 1*4 Total passengers generated
DTTCNT - 1*4 Total trips generated
MEANTM - R*4 Actual exponential interarrival time mean
DTARUS - 1*4 Start time

6.1.19.4 Description - After first verifying the input it has received
from the Trip Demand File, SITDGN generates trips until the end time
specified is reached. The components of each trip are generated as

follows:

o The trip arrival time equals the time of previous arrival plus

interarrival time where the interarrival time is randomly
chosen from a user defined distribution or from an exponential
distribution with a user defined mean (interarrival time =

mean interarrival time x log (random number between 0-1).
Initially the previous arrival time is set to the start time.

o The trip's origin is the simulated station.

6-30

o The trip's destination is chosen from a user defined destina-
tion distribution.

o The number of passengers in the trip is chosen from a user
defined trip size distribution.

Each trip is written to the Structured Data Trip Sequence File.

At the completion of trip generation, SITDGN writes a trip summary
report.

6.1.19.5 PPL - See Appendix A.

6.1.19.6 Decision Tables and Algorithms - SITDGN uses the following
algorithm to generate trip arrival times.

Exponential arrival rate

ARIV = PREV + (-MEAN(1 n(RAND))

)

where

ARIV = Arrival time
PREV = Time of previous arrival
MEAN = Mean interarrival time (user input)

RAND = Random number between 0 and 1

User arrival rate

ARIV = PREV + DTIATD (RAND ,y)

where

ARIV = See above
PREV = See above
RAND = See above
DTIATD (x, y) = User distribution where x is a

cumulative probability and y is

an interarrival time

Trip destination is chosen from a cumulative probability distribution.

6 - 3 ;

Destination Dist. Meani nq

DTDESD(l)
DTDESD(2)

P (destination is station 1)

P (destination is station 2 or 1)

DTDESD (KNS) P (destination is station KNS, ...2, 1)

SITDGN chooses a random probability between 0 and 1 and finds the
first entry in DTDESD whose value is greater than or equal to the random
probability. The entry number (1 to KNS) is the destination.

Trip size is also chosen from a cumulative probability distribution,
DTPASD.

6-32

6.1.20 SIVDGN

6.1.20.1 Identi f i cation

o SIVDGN - Vehicle Demand Generation

o IBM/FSD - July 1, 1977

0 FORTRAN IV (H Extended) with PARAFOR

6.1.20.2 Argument Dictionary - None.

6.1.20.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

CEXP - 1*4 Exponential IAT character indicator
CUSER - 1*4 User IAT character indicator
CIATYP - 1*4 Either exponential or user IAT character indi

DERR - 1*4 If = 1, an error has been found
DIATMN - R*4 Input mean interarrival time
DMEAN - R*4 Actual mean interarrival time computed

as vehicles are generated
DNXRTE - 1*4 Next arrival time on current route
DNXTIM - R*4 Time of next vehicle arrival
DPASMN - R*4 Input mean no. passengers/trip
DPSMNA - R*4 Actual mean no. passengers/trip.

Computed as trips are generated
DSTP1 - 1*4 % of trains stopping at simulated station
DSTP2 - 1*4 % of vehicles stopping at simulated station
DSTP3 - 1*4 % of trains not stopping at simulated station
DSTP4 1*4 % of vehicles not stopping at simulated

station
DTERM - 1*4 If = 1, a serious error has been

found. Terminate
DVGNER 15 1*2 Indicators for 15 input error types

checked in vehicle generation
DVPREV KMR R*4 Previous vehicle arrival time/route
DVTMNA KMR R*4 Current IAT mean/rte. computed as

vehicles are generated for output
purpose

DTPMNA - R*4 Actual no. trips/vehicle. Computed
as trips and vehicles are generated

DTRMNA - R*4 Actual no. vehicles/train. Computed
as vehicles and trains are generated

6-33

DTRPMN - R*4 Input no. trips/veh mean
DVEHMN - R*4 Input no. vehicles/train mean.
IRTEND - 1*4 End of route list of lists
IVEH - 1*4 Index no. for vehs/ train
PASTOT - 1*4 Total passengers stopping at sim'd station
TR1T0T - 1*4 Total trains stopping at sim'd station
TR2T0T - 1*4 Total trains not stopping at sim'd station
TRPTOT - 1*4 Total trips stopping at sim'd station
VH1T0T - 1*4 Total vehicles stopping at sim'd station
VH2T0T - 1*4 Total vehicles not stopping at sim'd station
DVARVS - 1*4 Start time

6.1.20.4 Description - After verifying/initializing the input parameters
received from the vehicle demand file, SIVDGN generates vehicles and
onboard trips until the arrival time of the next vehicle is greater than
the end generation time. This process starts with a user-specified start time.

If the service policy is scheduled SIVDGN does the following:

1. Select the route with the next arrival time.

2. Get train length for chosen route.

3. Set the next stop to the simulated station or not after
examining a route next stop indicator or scanning all the

route stops for the simulated station.

4. Call subroutine SIGIAT to determine the next arrival time

for the chosen route.

If the service policy is demand responsive, SIVDGN does the

fol lowing:

1. Select train length from probability distribution.

2. Use next stop probability to determine if train should stop

at simulated station.

3. Call subroutine SIGIAT to determine arrival time of next

vehicle.

For all vehicles SIVDGN chooses a sink from the user sink distribution.

If the train is to stop at the simulated station, SIVDGN generates

onboard trips (0 or more), choosing the maximum number of trips and

number of passengers per t*rip from user defined probability distributions.

Trips are generated until either the vehicle capacity is reached or the

maximum number of trips is generated.

6-34

For each vehicle generated a vehicle record and for each onboard
trip a trip record are written to the Structured Data Vehicle Arrival File.

When all vehicles have been generated, SIVDGN writes a vehicle
summary report.

6.1.20.5 PPL - See Appendix A.

6.1.20.6 Decision Tables and Algorithms - See SIGIAT (subsection 6.9)
for a discussion of interarrival time computation.

SIVDGN chooses several trip/vehicle characteristics from cumulative
probability distributions.

Trip destination
Trip size
Sink
Train length (demand)
Trips/veh

DVDESD (KNS)
DVPASD (KNNP)
DVSNKD (3)
DVTLND (KNTLEN)
DVTRPD (KNNT)

The following illustrates the process for trip size selection.

Di stribution Meani ng

DVPASD(l) P (trip = 1 passenger)
DVPASD(2) P (trip < 2 passengers)

DVPASD (KNNP) P (trip < KNNP passengers)

SIVDGN chooses a random probability between 0 and 1 and finds the
first distribution entry whose contents is greater than or equal to the
random probability. The entry number chosen is the number of passengers/trip.
The only exception to this process in the selection of trips/vehicle where
the selection of entry 1 means 0 trips, entry 2 means 1 trip, entry 3

means 2 trips, etc.

6.1.21 SMRNG - See subsection 6.2.55, SMRNG.

6.1.22 SMRSEL - See subsection 6.2.56, SMRSEL

6.1.23 TIMES - See subsection 6.2.6, DTIMEL.

6-35

6.2 MODEL PROCESSOR

Model

This section contains the subprogram descriptions for the DSM-

Processor.

6- 36

6.2.1 DAYTIM

6. 2. 1.1 Identification

o DAYTIM - Convert Date and Time

o IBM/FSD - July 1, 1977

o PARAFOR

6. 2. 1.2 Argument Dictionary

VAK 1 ABLE |
DIM

|I

T YPE
|
DESCRIPTION

MM — 1 *2 (OUTPUT

)

MONTH
DU — 1 *2 (OUTPUT

)

DAY
Y Y -

1 *2 (OUTPUT

)

YEAR
HH — 1^2 (OUTPUT

)

HOURS
MM -

I £2 (OUTPUT

)

M INUTES
SS -

I *2 (OUTPUT

)

SECONDS

6. 2. 1.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

YEAR 2 1*4 Century and year of century
HMS 3 1*4 Flours, minutes, seconds
SS 1*2 Seconds
LEAP 1*4 Indicates leap year

6. 2. 1.4 Description - The purpose of DAYTIM is to get Julian date and
time from system clock and return calendar date and time. DAYTIM first
calls DTMEL via entry point TIMES to get the Julian date and time from
the system clock. The returned year is then tested for leap year with
the MOD function to determine which calendar routine to use. The calendar
routine then uses the day of the year to find the month of the year and
the day of the month.

6. 2. 1.5 PDL - See Appendix A.

6. 2. 1.6 Decision Tables and Algorithms - None.

6-37

6.2.2 DBUG

6. 2. 2.1 Identification

o DBUG - Intermediate Output Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 2. 2 Argument Dictionary

| VAKl ABLE
I
DIM

I
Type

I
DESCRIPTION

I D

rLAt

C 1

CD

CD

C A

c s

Co

C7

C 6

CS

CIO

C MAXIMUM 51 CHARACTERS CF TEXT TO 3E OUTPUT IN

DBUG MESSAGE. ENCLOSED IN SINGLE QUOTES
rtHtfN IMBEDDED BLANKS ARE USED.

1*4 array subscript for a logical variable
tested During execution to determine if
MESSAGE DISPLAY IS REQUIRED.
AFLAG MUST LIST THIS FLAG DURING EXECUTION.

C VARIABLE NAME to BE DISPLAYED WITH VALUE
WHEN DEUG MESSAGE IS ISSUED. MUST BE
FULLY QUALIFIED. (OPTIONAL

)

C VARIABLE NAME TO EE DISPLAYED WITH VALUE
WHEN DBUG MESSAGE IS ISSUED. MUST BE
FULLY QUALIFIED. (OPTIONAL)

C VARIABLE NAME TO BE DISPLAYED WITH VALUE
wHLN DSUG MESSAGE IS ISSUED. MUST BE

t-ULL Y UUALIFIED. (OPTIONAL)
C VARIABLE NAME TU BE DISPLAYED WITH VALUE

WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)
C VARIABLE NAME TU BE DISPLAYED WITH VALUE

WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)
C VARIABLE NAME TO BE DISPLAYED WITH VALUE

WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)
c VARIABLE name TO BE DISPLAYED WITH VALUE

WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)
C VARIABLE NAME TO BE DISPLAYED WITH VALUE

WHEN UdUG MESSAGE IS ISSUED. MUST BE
FULLY QUALIFIED. (OPTIONAL)

C VARIABLE NAME TU BE DISPLAYED WITH VALUE
WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)
C VARIABLE NAME TO BE DISPLAYED WITH VALUE

WHEN DBUG MESSAGE IS ISSUED. MUST BE

FULLY QUALIFIED. (OPTIONAL)

6-38

6. 2. 2.

3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUTA
OUTB
FMT

C

C

C

Constructed FORTRAN code
Constructed FORTRAN code
Format statement number

6. 2. 2.

4

Description - The purpose of DBUG is to provide a trace facility
within the DSM simulator. This macro generates IF, WRITE, and FORMAT
statements. When the flag is turned on at execution time, the write
statement is executed and prints the first six characters of the variable
and its value for as many as ten variables in addition to a message.

6. 2. 2.

5

PPL - See Appendix A.

6. 2. 2.

6

Decision Tables and Algorithms - None.

6-39

6.2.3 DQUE
i

6. 2. 3.1 Identification

o DQUE - Dequeue Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 3. 2 Argument Dictionary

i _ - - _

| VAkIABlE
i
DIM

l
TYPE

j

I

tvp: - c *

l

HLAD - C

INDtX — u

VCHA IN - C

DE SCRIPT ION

ENTITY TYPE TO BE uEGUEUED (X.V.T)
QUEUE LIST HEAD/ TAIL WORD MUST SE
FULLY QUALIFIED
(INPUT) VARIABLE NAME TO BE ASSIGNED TO
ENTITY REMOVED FROM THE QUEUE LIST.
(OUTPUT) NON-ZERO ENTITY NUMBER OF THE XTN
REMOVED OR ZERO IF THE QUEUE WAS EMPTY.
TRANSACTION CHAIN WORD (OPTIONAL; DEFAULT
GUECH/PELCH

)

6. 2. 3. 3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code

M - C Hold margin pointer
XCHAIN - C ' QUECH 1 default string

6. 2. 3. 4 Descripti on - The purpose of DQUE is to remove an entity from

FIFO or LIFO queue. This macro generates code which when executed takes

the first entity off a queue. If the queue was specified as being FIFO

in NQUE, then the entity queued for the longest time (the one at the head of

the link) is removed. Otherwise, the entity queued for the shortest time

is removed. The chain is then closed and the head is set to the next

entity. If no entities remain in the chain, the head is set to zero.

6. 2. 3. 5 PDL - See Appendix A.

6. 2. 3. 6 Decision Tables and Algorithms - None.

6-40

6.2.4 DQUEM

6. 2. 4.1 Identification

o DQUEM - Dequeue a Particular Entity for Anywhere in a Queue
Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 4. 2 Argument Dictionary

1

j
VA RI ABLE J

1

DIM
|
TYPE

|
Dt SCR1PT1QN

1 YPE - C* 1 ENTITY TYPE ID BE DEQUEUED (X*V,T)
HEAD — c QUEUE LIST HEAD/TAIL WORD MUST BE

FULLY QUALIFIED
I NDEX u (INPUT) VARIABLE NAME OF ENTITY TO BE REMOVE

FROM THE QUEUE LIST.
(OUTPUT) VALUE GREATER THAN u IF XTN WAS NOT
ROUND OR 0 IF INDEX WAS FOUND.

YCriA IN c I R AN SAC T ION CHAIN WORD (OPTIONAL; DEFAULT
UUL CH/FELCH

)

6. 2. 4.

3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M - C Ho 1 d margin pointer
XCHAIN - C 'QUECFT default string
LOCI - C Pointer to head of queue
L0C2 '

C Chai nword

6. 2. 4.

4

Description - The purpose of DQUEM is to remove a given entity
from anywhere in a queue. This macro generates code which when executed
steps through the queue until the desired entity is found, removes it

from the queue, and repairs the chain.

6. 2. 4. 5 PDL - See Appendix A.

6. 2. 4. 6 Decision Tables and Algorithms - None.

6-41

6.2.5 DQUEMID

6. 2. 5.1 Identi f i cati on

o DQUEMID - Remove a Specific Entity from a Queue Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 5. 2 Argument Dictionary

(VARIABLE:
|
DIM

j
TYPE

i
DESCRIPTION

i

l

T vPc
TAIL

LOOP VAR

?K L D

CHA i N W

D

C* I cNTl I Y T YPE TO BE DEQUEUED (X,V,T)
C QUEUE list head/ tail word must be

BULLY QUALIFIED
c variable name of the entity in THE QUEUE

POINTED TO bY ••QLOOP**

C VAkLABLE NAME OF THE ENTITY WHOSE CHAIN V/OAD

POINTS TO LOOPVAK
C TRANSACTION CHAIN WORD (OPTIONAL; DEFAULT

XQUECH/VQUECH/TGUECH

)

6. 2. 5. 3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M C Hold margin pointer

6. 2. 5. 4 Description - The purpose of DQUEMID is to remove a specific
entity from a queue in conjunction with the QLOOP macro. This macro
generates code which when executed removes the currently active entity
in a QLOOP operation from its chain and repairs the chain. DQUEMID can
only be used inside a QL00P/ENDQL00P code segment with other code that
is to be performed on each entity in the queue and so is able to allow
QLOOP to effectively locate the entity.

6. 2. 5. 5 PPL - See Appendix A.

i

I

6. 2. 5. 6 Decision Tables and Algorithms - None.

i

T

6-42

6.2.6 DTI MEL

6. 2. 6.1 Identi f i cati on

o DTIMEL - Read System Clock for Date and Time

o IBM/FSD - July 1, 1977

o ASM

6. 2. 6. 2 Argument Dictionary

|
VAR I ABLE

1

|
DIM

||

T YPE
|
DESCRIPTION

7 I MES I

YEAR 2 I *4 (OUTPUT

)

YEAR. JULIAN DAY
HV.S I 44 (OUTPUT

)

HOURS, MINUTES, AND SECONDS
Si_ C —

I ¥4 (OUT PU T) TIME OF DAY IN SECONDS
DLL T —

I ^4 (OUTPUT

)

ELAPSED TIME SINCE CAST CALL TO TIME
(IN SECONDS)

6. 2. 6.

3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

TA 1*4 Seconds of the day
DBL 2 1*4 Packed decimal rate and time
YIM 2 1*4 Century any year of century
HIM 3 1*4 Hours, minutes, seconds

i

6. 2. 6. 4 Descripti on - The purpose of DTIMEL is to get the Julian date
and time from the system clock. DTIMEL is called by DAYTIM to read the
system clock and return the current date and time. DTIMEL calls the
system TIME macro to get the date and time in EBCDIC. The routine then
converts the date and time to binary and returns to the calling program.

6. 2. 6. 5 PDL - See Appendix A.

6. 2. 6. 6 Decision Tables and Algorithms - None.

6-43

6.2.7 ENDQLOOP

6. 2. 7.1 Identi fi cation

o ENDQLOOP - Terminate a QLOOP Code Segment Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 7. 2 Argument Dictionary - None.

6. 2. 7. 3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M C Hold margin pointer

6. 2. 7. 4 Description - The purpose of ENDQLOOP is to terminate the

code segment of a QLOOP. This macro generates @ENDIF and @ENDD0 state-

ments which close-off corresponding @IF and @D0WHILE statements generated
by the QLOOP macro.

6. 2. 7.

5

PPL - See Appendix A.

6. 2. 7.

6

Decision Tables and Algorithms - None.

6-44

6.2.8 FREE

6. 2. 8.1 Identification

o FREE - Return an Entity to an Available List Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 8. 2 Argument Dictionary

|
VAK I ABLE | DIM

|
TYPE

|
DESCRIPTION

TYP-
I \D ^ X

C*1 ENTITY TYPE TO BE BREED (X.V.T)
C VAk1,*BLE NAME OF ENT ITY 10 BE kc. TURN ED

THE LIST OF AVAILABLE TRANSACTIONS.
T O

XL i S T c HEAD TO THE AVAILABLE Lib
XAVAIL/V AVAIL/ TAVA IL

)

6. 2. 8.

3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT -
C Constructed FORTRAN code

M - C Hold margin pointer
LIST - C 'AVAIL' default string
TYPE1 C Null string

6. 2. 8.

4

Description - The purpose of FREE is to return an '

(OPTIONAL; DEFAULT

the available list of corresponding entities. This macro generates

code which when executed checks to see if the entity is in a chain

and if so, generates an error message. Otherwise, it changes the

entity's chain word to point to the current top of the available
transactions list and changes the list head to point to it.

6. 2. 8. 5 PDL - See Appendix A.

6. 2. 8. 6 Decision Tables and Algorithms - None.

6-45

6.2.9 GET

6. 2. 9.1 Identi f ication

o GET - Remove an Entity from the Available List Macro

o IBM/FSD - July 1, 1977

o PL/I

6. 2. 9. 2 Argument Dictionary

| VAR

i

able

type.

INDEX

XL1S1

DIM
j
TYPE

|
DESCRIPTION

C*1 ENTITY TYPE TO 8E REQUESTED (X,V,T)
L VARIABLE NAME OF ENTITY TO BE GOTTEN FRO vt

THE LIST OF AVAILABLE TRANSACTIONS.
C HEAD TO THE- AVAILABLE LIST (OPTIONAL; DEFAUcj

XA VAIL/V AVA 1 L/T AVA IL)

6. 2. 9. 3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C

M C

LIST - C

TYPE1 - C

Constructed FORTRAN code
Hoi d margin pointer
'AVAIL 1 default string
Null string

6. 2. 9. 4 Descri pti on - The purpose of GET is to remove an entity from
the available list. This macro generates code which when executed
checks to see if there are any more entities in the available list.
If not, an error message is generated. If so, the code changes the
list head to the value of the current list head, sets the chainword
of this now-old top entity to zero, and returns its ID.

6. 2. 9. 5 PPL - See Appendix A.

6. 2. 9. 6 Decision Tables and Algorithms - None.

6-46

I

6.2.10 MULTICK

6.2.10.1 Identification

o MULTICK - Test if Currently Enqueued Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.10.2 Argument Dictionary

i

IVAs'IACLt
j
DIM

|
TYPE

|
DESCRIPTION

7 YPZ
I ND £L A

AC.Hm 1 N
N mM >_

C-l ENTITY TYPE TO BE REQUESTED (X,V»T)
C VARIABLE NAME DF ENTITY
C ENTITY CHAIN WORD
C TEXT DESIGNATION OF CHAIN TO APPEAR IN

ERROR MESSAGE (OPTIONAL)

I

6.2.10.3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code

6.2.10.4

Descr ipti on - This macro is used by other macros to ensure
that an entity is queued in only one list at a time. It generates code
which when executed tests the chainword of the entity. If it is non-
zero, an error message is generated.

6.2.10.5 PPL - See Appendix A.

6.2.10.6 Decision Tables and A ^orithms - None.

6-47

I

6.2.11 NQUE

6.2.11.1 Identi f i cati on

o NQUE - Place an Entity into a Queue Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.11.2 Argument Dictionary

VA tv I .-v OLE
|
DIM

|
TYPE

t
DESCRIPTION

1 YP- - C* 1 ENTlfY TYPE TO BE tNUUEUED (X.V.T)
HEAP — C OULUt LIST HE A D/ TAIL WORD MUST 3b

FULLY QUALIFIED
1 NL>t X — L EN 1 I TY ID OF ENTITY TO BE ENQUEUED

REMOVED OR ZERO IF THE QUEUE WAS E MP 1 Y .

L I F 0 1 *4 TYPE OF ENQUEUE REQUIRED:
NUMb-lR GREATER THAN ZERO = LIFO
NULL = FIFO

YCH A I N C TRANSACTION CHAIN WORD (OPTIONAL; DEFAULT
OULCH/FE LCH)

6.2.11.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M - C Hold margin pointer
XC HA I

N

-
C

1 QUECH 1 default string

6.2.11.4

Description - The purpose of NQUE is to place an entity into
a queue. This macro generates code which first uses MULTICK to determine
if the entity is already enqueued. If not, it then proceeds to alter
chainwords and the queue head in order to LIFO/FIFO enqueue the entity.

6.2.11.5

PPL - See Appendix A.

6.2.11.6

Decision Tables and Algorithms - None.

1

6-48

6.2.12 QLOOP

6.2.12.1 Identification

o QLOOP - Loop Through a Queue Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.12.2 Argument Dictionary

| VARIABLE I
DIM

I
TYPE

i
DESCRIPTION

j

T YPB
TAIl.

LOOPVAR

PRED

CHAINED

F IN 1

C-l ENTITY TYPE IN QUEUE (X»V*T>
C liUtUh LIST HE A D/ TAIL WORD MUST BE

FULLY QUALIFIED
C (INPUT) VARIABLE NAME TO BE ASSIGNED TO

AN ENTITY.
(OUTPUT) THE ENTITY IN THE QUEUE THAT WAS
ADVANCED TU BY QLOuP.

C (INPUT) VARIABLE NAME TO BE ASSIGNED TO THE
ENTITY POINTING TO " LOOP VAR • *“ (OP 7 I UN AL)

(OUTPUT) THE ENTITY IN THE QUEUE WHOSE CHAIN
WORD POINTS TO THE ENTITY IN “LOUPVAR."

C TRANSACTION CHAIN WORD
(OPTIONAL; DEFAULT IS QU E C Ft/ E E LC H)

L*1 VARIABLE NAME OF A LUGICAL VARIABLE THAT CAN
lE SE T WIThIN THE OLOOP/ENDQLGUP PROCESSING TO
CAUSE THE LOOP PROCESSING TO TERMINATE AT
ENDQLOOP IF THE VALUE IS TRUE. (IT Is INITIAL-
IZED TO FALSE BY THE MACRO AND IS GPTIUNAL .)

6.2.12.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M - C Hold margin pointer
FINI1 - C Constructed FORTRAN code
FINI2 - c Constructed FORTRAN code
LOCI - C Queue head
L0C2 -

C Queue chainword

6-49

6.2.12.4
Description - The purpose of QLOOP is to loop through a queue,

in order from head (longest waiting entity) to tail, performing a code
segment on every entity in the queue. This macro generates code which
when executed together with ENDQLOOP allows a code segment located
between these two macro names to be performed on every entity in the queue.

It effectively returns the ID of every entity in the queue to the code
segment. DQUEMID can be in this code segment to allow any entity to be

removed. An early exit flag can be set to true in the code segment to

immediately drop through the loop.

6.2.12.5

PPL - See Appendix A.

6.2.12.6

Decision Tables and Algorithms - None.

6-50

6.2.13 SAASYN

6.2.13.1 Identi f i cation

o SAASYN - Process Asynchronous Commands

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.13.2 Argument Dictionary - None.

6.2.13.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

NAMES 12 1*4 List of legal HEADER CARD names
TEXT 18 1*4 Holds 72 characters of data from TEXT

FOLLOWER CARD
END *3"*i

—

l

Holds keyword END searched for on

cards
FIND - L*1 Indicates legal header name found
SKIP “ L*1 Indicates next card read to be skipped

since EOD or STOP CARD found
AEOF - L*1 End of file on asynchronous card file

CU - 1*4 Clock in seconds

6.2.13.4 Description - The purpose of SAASYN is to perform the processing
reguired to input the asynchronous data. This data can be commands
which cause status changes within the simulation system or change specifi-
cations which modify the value of system parameters and data. It takes
the form of a CASE block where the data item that determines the case
to be performed is the event type of the transaction XMEVNT (XACTIV).
XMEVNT is analogous to VMEVNT and TMEVNT in that they are all "subvent
types" of the system level events used at the SAMAIN level. The
asynchronous data associated with the event is processed according to

the header card which initially caused the scheduling of the asynchronous
event as follows:

1. DATA/OPTION/PARAM/SELECT Fleader Cards initiate successive data

change requests to update the global data variables and param-
eters as required. Reading is done using SMGDIP4 (GDIP).

6-51

2. FAIL header cards initiate the reading of failed selected
data with GDIP and the calling of SAFAIL to perform failure
related processing.

3. FLAG header cards initiate intermediate debug output used in

program maintenance. SAFLAG sets the flags based on informa-
tion provided on follower cards.

4. TEXT header card initiates the writing of one line of text
from one follower card to the system output device.

5. CKPT header card initiates the writing of one checkpoint
record on demand using SACKR.

6. EOF or STOP header cards terminate the simulation by causing
the asynchronous data read transaction to be scheduled as

the termination transaction.

7. TRIP header cards cause a number of trips defined on follower
cards to be read.

8. VEH header cards cause a vehicle and onboard trips as defined
in follower cards to be read in as a vehicle arriving on the
gui deway.

9. INDEX header cards initiate the reading of index followers and
the writing of them to the index file until an END card is

encountered.

6.2.13.5 PPL - See Appendix A.

6.2.13.6 Decision Tables and Algorithms - None.

6-52

6.2.14 SACKR

6.2.14.1 Identification

o SACKR - Checkpoint and Restart Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.14.2 Argument Dictionary

VAK 1 A fc? L_H |
DIM

|
type

i
DESCRIPTION

SACKR :

C A R R A —
I =£4 STARTING ADDRESS OR COMMONS

LEN
oACKPT

:

NONE
I *4 LENGTH OF THE COMMONS

bARE ST :

lT j iVE — R *4 TIME Or- REQUESTED kESTART

6.2.14.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

NAMES 12 1*4 List of legal header card names
END “ 1*4 Holds keyword END searched for on

cards
FIND “ L*1 Indicates legal header name

found
AEOF “ L*1 End of file on asynchronous card

file
TEOF - L*1 End of file on trip file
VEOF 3 L*1 End of file on vehicle files
CEOF - L*1 End of file on checkpoint file
TTTIME - 1*4 Requested restart time in CU

6.2.14.4 Description - Checkpointing is performed
of a simulation experiment at any point during the

pointing can occur at periodic intervals or via an

request or at failure. The checkpoint data can be

simulation by reinitialization of system status as

point. This code segment contains entry points to

to save the status
simulation run. Check-
asynchronous data
used to restart the

saved by the check-
perform both checkpointing

6-53

(SACKPT) and restart (SAREST). The writing of system status during a

checkpoint involves a sequential binary write of core storage beginning
at the symbolic address defining the beginning of global common data for
the simulation system,. The address of this area and its length are defined
to checkpoint processing during initialization. This is accomplished by
causing definition of the checkpoint area and its length to be established
by issuing a call to the checkpoint I/O routine (SANTSA) during initializa-
tion. The actual checkpoint is performed by an entry point (SACKPT)
defined in the checkpoint I/O routine to which control is transferred
when a checkpoint is required.

Restart is performed by reading the checkpoint file until a

record is read with a clock value equal to that requested. When this

record is found, it is used to reposition the run time, trip, and
vehicle files. This process essentially takes the place of initializa-
tion. Control then returns to the main routine (SAMAI N) when processing
will continue.

6.2.14.5 PDL - See Appendix A.

6.2.14.6 Decision Tables and Algorithms - None.

6-54

6.2.15 SACOMN

6.2.15.1 Identi f i cation

o SACOMN - Input Common Area Sequencing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.15.2 Argument Dictionary - None.

6.2.15.3 Local Variable Dictionary - None.

6.2.15.4 Description - This routine is used by both the IP and MP to

force an identical ordering of input area commons. This is done by

including it as the first object module at link edit time in both the
IP and MP that contains the input commons. This ordering is necessary
to ensure that the ordering of these commons in the IP from which
AGT. STRUC. SYSTEM is the same as that in the MP into which they are
read. This is a linkage edit time device.

6.2.15.5 PPL - See Appendix A.

6.2.15.6 Decision Tables and Algorithms - None.

6-56

6.2.16 SADADD

6.2.16.1 Identi f i cati on

o SADADD - Initialize Input Area Addresses and Message Common

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.16.2 Argument Dictionary

I . - . .

[variable
i dim

|
type

i
description

A U M O L> •

IPAREA - 1*4 STARTING ADDRESS OF INPUT COMMONS
LENS - 1*4 L.ENGTM OF INPUT COMMON

^andta: none

6.2.16.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

EOF - L*1 End of file on system characteristics
file

6.2.16.4

Descripti on - The purpose of SADADD is to initialize input

area address and message common (SCAMSG). SADADD is first called from

SANSAV to inform the routine of the starting address of the input commons
and the length of this area. These two factors are then used by the

routine when its entry point SANDTA is called from SAINIT to actually
perform the reading. The variables of SCAMSG are also initialized at

this time.

6.2.16.5

PPL - See Appendix A.

6.2.16.6

Decision Tables and Algorithms - None.

6-56

6.2.17 SAFAIL

6.2.17.1 Identi f i cati on

o SAFAIL - Failure, Degradation, and Recovery Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.17.2

Argument Dictionary - None.
6.2.17.3

Local Variable Dictionary - None.6.2.17.4

Description - This routine serves to set and reset variables
associated with failures, recoveries, degradation, and degradation
recoveries and take checkpoints of. failure. When this routine is

called, GDIP formatted data containing the input data has already been
read. The various activities are modeled as follows:

1. Station Link Entry Failure — A flag is set for the subject
link that will indicate to other parts of the simulation that
the link cannot be entered. A checkpoint is taken.

2. Station Link Exit Failure -- A flag is set for the subject
link to indicate to other parts of the simulation that the
link cannot be exited. A checkpoint is taken.

3. Station Link Entry Recovery — The flag is set at failure
time is turned off and an upstream prompt is done to attempt
to get waiting vehicles into the link.

4. Station Link Exit Recovery -- The flag is set at failure is

turned off and a self prompt is done to attempt to get waiting
vehicles off the subject link.

5. Station Link Degradation -- The degradation factor, SPLENT,
has already been read from the run time file (it typically
has been set greater than one by the user) and will be used
from then on as a multiplicative factor in the travel

event time calculation.

6-57

6

.

Station Link Degration Recovery -- The degration factor has
already been read from the run time file (it typically has

been set equal to one by ther user) and will be used from
then on in the travel event time calculation.

7. Trip Link Failure -- The number of servers on the subject
link is set equal to zero and used fron then on.

8. Trip Link Recovery -- The number of servers has already been
read in from the run time file (it typically is the full

number of servers) and will be used from then on. A prompt
is done to get trips moving again off the subject link.

9. Trip Link Degradation -- As opposed to Trip Link Failure,
the number of servers has already been read in from the run

time file (it typically is less than the full number of
servers and must be greater than zero) and is used from then
on.

10. Trip Link Degration Recovery -- As opposed to Trip Link
Recovery, the number of servers has already been read in from
the run time file (it typically is equal to the full number
of servers) and is used from then on. No prompting is done.

6.2.17.5 PDL - See Appendix A.

6.2.17.6 Decision Tables and Algorithms - None.

6-58

6.2.18 SAFINM

6.2.18.1 Identification

o SAFINM - Snapshot and Final Model Report

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.18.2 Argument Dictionary - None.

6.2.18.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

TYPE 20 1*4 Abbreviations for SL and TL types
for reports

HEAD1 5,10 1*4 Report line headings
TIME R*4 Current SIM time in seconds
KNTL 1*4 Number of trip 1 i nks
6.2.18.4

Description - The purpose of this routine is to write a

report that itemizes statistics collected since the last sample. This
routine simply prints out the statistics from the statistics common
with appropriate headings.

6.2.18.5

PPL - See Appendix A.

6.2.18.6

Decision Tables and Algorithms - None.

6-59

6.2.19 SAFINS

6.2.19.1 Identification

0 SAFINS - Final System Report

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.2.19.2 Argument Dictionary - None.

6.2.19.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

A - R*4 Percentage of total count
INFINY - R*4 Largest integer*4 possible
J - 1*4 Edge of histogram cells

6.2.19.4 Description - The purpose of this routine is to provide event
statistics. The event statistics reflect usage demands placed on the
event scheduling mechanism of the simulator as defined by user input
data for establishing a clock table and multiple thread list definitions.
These statistics provide the basis upon which more efficient definitions
of the FEL can be based in future simulation experiments to increase the

run time speed.

The report is based on the following analysis. The two primary
measures of simulator operation are:

= CPU time/SIM time ~ RUNTIME

and

Y\^ = No. of Events Processed/CPU Time = SIMULATOR EFFICIENCY

The complementary measure is:

M~ = No. of Events Processed/SIM Time = DENSITY OF FEL
6 (Future Event List)

6-60

Note:

Mi
=

m
2 =

M -

3

M^ can be

M^ can be

1 .

H
3
/M

2

M
3
/M

l

reduced by decreasing or increasing M
2

,

decreased by:

Decreasing the size of the model (i.e., number of traffic
units and size of traffic network); and

Decreasing the number of events which traffic units must
encounter.

M
2

can be increased by:

3. Improving the efficiency. of the event program code; and

4. Improving the efficiency of the Future Event List (FEL) code.

For any given model run 1, 2, and 3 are fixed and only 4 is open to

improvement by varying a parameter called CLBIG. (CLSMAL = CLBIG/1000,
by definition.) The remainder of this section is devoted to optimizing
CLBIG, which in turn for any given model run will optimize M^ and M

2
.

The current structure of the Future Event List (FEL) is such that
is the At of a TXN is less than CLBIG, then the TXN is put into a clock
table (C/T) while i f At > CLBIG, the TXN is put into a multiple thread
chain (M/T). That is,

If Then TXN Put Into

At < CLBIG C/T
/it > CLBIG M/T

This is shown in Figure 6-1.

6-61

#TXNs

k

0
At

0 CLBIG

Figure 6-1. Distribution of Number of Transactions
versus Their Delta Time

Thus, CLBIG forms a cutoff determining how many transactions are

processed by the clock table mechanism versus the number acted on by the

M/T mechanism.

W
£

= Work (Number of instructions to be executed or execution
time) required to put a TXN in C/T and remove it for processing.

W = Work required to put a TXN in M/T and remove it for
processi ng.

Objective: If too many TXNs are put into the C/T, then the
average number of TXNs per C/T entry will increase to a point where too
much work is being done in managing the TXNs in C/T entries. On the
other hand, if too many TXNs are put in the M/T, then too much work
will be done searching through M/T TXNs and the direct indexing facility
of the C/T will be under-utilized. So the objective is to find a balance
between N and N so as to minimize the expected amount of work associated
with processing a TXN. This expected amount of work is given by the
following weighted average:

Let:

N
c

= Number of TXNs processed via C/T

N = Number of TXNs processed via C/T
m r

N = N + N = Number of TXNs processed from the Future Events
List f FEL)

m

R = N /N
c

W =
N

6-62

Now, note that W is itself a function of N
,
since a larger N

implies a larger average number of TXNs per C/T £ntry which implies
c
a

longer search during insertion. A linear function seems to be a

reasonable approximation:

W = a + bN
c c

Where

a = Amount of work (execution time) required to put a TXN in

C/T and remove it for processing regardless of the number of

TXNs in the C/T .

and

b = The average incremental incrase in work required to put a

TXN in C/T and remove it for processing caused by each (one)

TXN added to the C/T.

Similarly for WJ m

W = c + dN = c + dN - dN
m w c

So our objective function becomes:

W
N

(a + bN
c
)N

c
+ (c + dN - dN

Q
)(N - N)

N [
((aN + bN + cNv

c c
cN + dN

2 " DNN - dNN + dN
2

c c c c

Differentiating W with respect to N to find the value of N for
which W is a minimum:

dW
dN

1
N

a + 2bN - c - 2dN + 2dN = 0
c c J

_ 2dN + c - a _ d
M c - a

2(b+d) b+d
N

2(b+d) N
c

_ c _ d + c-a

N b+d 2N(b+d)

(1)

(2)

6-63

Si nee

,

d
(2)

W

dN^
2)

c

c c

Equation (1), in fact, provides the value of N
c
yielding a minimum W.

Thus, R in equation (2) gives us the desired balance between N

and N . But it does not qive us a value for CLBIG. The value of
c

CLBIG will depend on the magnitude of the At' s in the simulation. In

some simulations At could be on the order of microseconds, while in

others it could be on the order of hours, depending on the system being
simulated via this C/T-M/T method. Note that R is primarily a function
of the "work" coefficients (a, b, c, and d), that is, the C/T-M/T
code, not the model code orzit's of the model. CLBIG is a function of
the At 1

s and should be selected such that a fraction, R, of the total
number of TXNs processed fall in the C/T.

The distribution of the number of transactions as a function of
t will vary from model to model as shown in Figure 6-2.

2 (b+d

)

> Q

N

N =N 1

Figure 6-2. Contrasting Distributions from Two Models

Now assuming a particular value of R* of R is known, CLBIG (and in

turn CLSMAL = CLBIG/DMCLTA = CLBIG/1000, which the user inputs) can be
found by inspecting the histogram in the system output report and
finding the time value in the second column that corresponds to R* in

the fourth column. By varying the base of the histogram (FLDI4(3))
and the width of the cells (FLDI4(4)) ,

the user can "home-in" on CLBIG
and, thus, finer values of CLSMAL.

To initially estimate or to try to improve on the R* value that
should be used, the histogram in the report should be used as follows.
A series of runs should be made that vary CLBIG (by varying CLSMAL)
and the execution time noted. The run with the minimum execution
time should give the best value of R*. R* is calculated by finding
the value of CLBIG in the second column of the histogram and then

6-64

finding the corresponding percentage in the fourth column. The user
should set the base and width of the histogram to insure that it contains
the value of CLBIG used during the run. By the base and width the user
can "home-in" on R*. The execution time of any given run may vary due
to contention with other jobs in a multiprogramming system. Thus a

plot execution time versus CLSMAL with a finer point may not produce
a clear parabola as suggested by the analysis above. Thus, this
should be done over a many runs as possible.

Lastly SAWTIN is called to list in the index file the members that
were used in the run.

6.2.19.5 PPL - See Appendix A.

6.2.19.6 Decision Tables and Algorithms - None.

6-65

6.2.20 SAFLAG

6.2.20.1 Identification

o SAFLAG - Intermediate Output Flag Setting

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.20.2 Argument Dictionary - None.

6.2.20.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

FINI - L*1 Indicates last card found
TEMP 18 1*4 Flag numbers from current card
AE0F L*1 End of file on asynchronous card

f i 1 e

L 1*4 Lower bound of range of flags to

be set true
U 1*4 Upper bound of range of flags to

be set true

6.2.20.4 Description - This routine sets flags associated with get
intermediate output generated using the DBUG macro. This routine first
turns off all flags and reads cards containing the numbers of flags
to be set until a zero field is found. The requests can contain ranges
of the flag value, e.g., 47-54. The requested flags are turned on and
used henceforth.

6.2.20.5 • PPL - See Appendix A.

6.2.20.6 Decision Tables and Algorithms - None.

6-66

6.2.21 SAINIT

6.2.21.1 Identification

o SAINIT - System Initialization

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.21.2 Argument Dictionary - None.

6.2.21.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

REST - 1*4 Restart card name
DATA - I* 4 Data card name
OPTI - 1*4 Option card name

SELE - 1*4 Select card name
PARA - 1*4 PARAM card name
FLAG - 1*4 Flag card name
ZTIME - R*4 Time read from header card
TIME “ R*4 Time read from trip and vehicle

records
CU - 1*4 Clock in seconds
AEOF — L*1 End of file on asynchronous card

file
TEOF - L*1 End of file on trip file
VEOF 3 L*1 End of file on vehicle files
KUNIT 1*4 I/O unit number from which to

read vehicle

6.2.21.4 Description - System initialization is performed to establish
the initial conditions for a simulation experiment. System initialization
begins by calling SANTSA to initialize the system status area addresses.
Then the first asynchronous data card is read from AGT. STRUC. RNTIM. If

this card is a restart card entry point SAREST of SACKR is called to

perform restart. Otherwise, initialization proceeds as follows. Entry
point SANDTA of SADADD is called to read in the binary system characteristics
data from AGT. STRUC. SYSTEM and to initialize message counters. Then any

zero time DATA, OPTION, PARAM, SELECT, or FLAG cards and their associated
follower cards are read from AGT. STRUC. RNTIM. Next SANXTN is called to

6-67

initialize transaction data, SANFEL to initialize the FEL, and SANMDL to
initialize model related data. After this the first trip and vehicle
records are read and scheduled. Then, unless their requested intervals
are zero, the periodic sampling and checkpointing transactions are
scheduled. The entry point SAUPTIX of SANTIX is called to update the
index file with load module name, date and time. Lastly, the next
asynchronous read transaction is scheduled.

Index cards are processed as in SAASYN. Trip records are skipped
over until a trip with an origin equal to the station being simulated is

found.

6.2.21.5 PPL - See Appendix A.

6.2.21.6 Decision Tables and Algorithms - None.

6-68

6.2.22 SAMAIN

6.2.22.1 Identification

0 SAMAIN - Model Processor Control

0 IBM/FSD - July 1, 1977

0

6.2.22.2

PARAFOR

Argument Dictionary - None.

6.2.22.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OLDSL - 1*4 Previous link current vehicle

AEND _ L*1

was on

End of SIM XTN found
LOOP - 1*4 Count of number of times XTN was

NOW - 1*4

removed from FEL without clock
changing; compare with CLOOP

Time of current transaction

6.2.22.4 Description - The purposei of SAMAIN is to serve as the mai

control loop of the simulator. This code segment runs code segment
SAIN IT to initialize the simulator. After this, SAMAIN continues to

perform the following operation until a termination transaction is

encountered. It gets the most imminent transaction
List (FEL), updates the clock to the time specified
and then proceeds according to the type of event as

transaction. The following are the different types
They should not be confused with events that can occur to a vehicle or
a trip -- these latter types of events can be viewed as "subevents" to

these system events.

off the Future Event
in this transaction,
specified in the

of system events.

1. Vehicle Event -- Something is about to happen to a vehicle.

2. Trip Event -- Something is about to happen to a trip.

3. Asynchronous Event -- Something is about to happen (such as

failure) that required the reading of more data into the

simulator.

6-69

4. Sampling Event -- It is now time to write out the values of
the simulation output variables.

5. Periodic Checkpoint -- It is now time to take a checkpoint of

the system.

6. Trip Origination -- A trip is about to arrive at the simulated
stati on.

7. Vehicle Origination -- A vehicle is about to arrive in the

simulated station area.

8. Station Link Prompt -- It is now time to try to get a vehicle
moving that was queued due to congestion or failure on a station
1 ink.

9. Trip Link Prompt -- It is now time to try to get a trip moving
that was queued due to congestion or failure on a trip link.

10.

End of Simulation -- It is now time to terminate the simulation.

For each of these system events, an appropriate code segment is run.

6.2.22.5 PPL - See Appendix A.

6.2.22.6 Decision Tables and Algorithms - None.

6-70

6.2.23 SANFEL

6.2.23.1 Identification

o SANFEL - Future Event List Initialization

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.23.2 Argument Dictionary - None.

6.2.23.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

INFINY - 1*4 Largest possible 1*46.2.23.4

Descripti on - This routine initializes the FEL. It begins by

getting a transaction and initializing it to be the infinite time multiple
thread transaction. Then the clock table and timing statistics are set

to zero. Internal timing control parameters are set based on input
timing control parameter values.

6.2.23.5 PPL - See Appendix A.

6.2.23.6 Decision Tables and Algorithms - None.

6-71

6.2.24 SANMDL

6.2.24.1 Identi fiqation

0
" SANMDL - Model Variable Initial ization

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.2.24.2 Argument Dictionary - None.

6.2.24.3 Local Variable Di cti onary

VARIABLE DIM TYPE DESCRIPTION

KNTL - 1*4 Number of trip links
IND - 1*4 .Improper configuration

local merge
TLMAX -

i

—

i

* -Pi* Maximum train length
6.2.24.4

Description - This routine initializes internal (non-input)
variables used by the model. This routine sets the variables in the

internal commons (SCMSYS, SCMSL, SCMTL, SCMT, SCMV) to their appropriate
initial values. Care is taken to avoid resetting values in the first
trips and vehicles that were set at the initial reads. SAZNIT is called
to initialize model statistics. Lastly, if the delay associated with
local merge is requested, tests are done to insure the required config-
uration of a downstream link having upstream of bypass and output links
upstream of it is present; that the bypass link headway is greater than
zero so that the slot width on the bypass link is greater than zero; and
that the lengths of the bypass and output links are consistent. If these
tests fail, the local merge option is turned off, a message is printed,
and the run proceeds.

6.2.24.5

PPL - See Appendix A.

6.2.24.6

Decision Tables and Algorithms - None.

6-72

6.2.25 SANSAV

6.2.25.1 Identification

o SANSAV - Initialize Checkpointing and System Data Read Processor

0 IBM/FSD - July 1, 1977

0 ASM

6.2.25.2 Argument Dictionary

v A R I A3 L E
|
DIM |

TYDE |
DESCRIPTION

AkGa
AkGb
Ak(?C

A K G Lx'

—

1*4 ADDRESS UF BEG I N N 1 NG OF COMMONS
1*4 length of commons in words
1*4 ADDRESS UF BEGINNING OF SYSTEM CHARACTER IS

DATA
1*4 LENGTH OF SYSTEM CHARACTER 1ST ICS IN aQRDS

6.2.25.3 Local Variable Dictionary - None.
6.2.25.4

Description - The purpose of SANSAV is to inform checkpointing
and system data read routines of addresses and lengths of common areas
which they need to perform their functions. This routine calls SACKR to

initialize it with the starting address of all the commons and their total
length and calls SADADD to initialize it with the starting address of the
input commons and their length. Before making these calls, this routine
also performs the function of converting these addresses of addresses into
simple addresses so that the FORTRAN routines SACKR and SADADD can proceed.

6.2.25.5

PDL - See Appendix A.

6.2.25.6

Decision Tables and Algorithms - None.

I

T I CS

6-73

6.2.26 SANTIX

6.2.26.1
Identification

o SANTIX - Initialize Member Name String

o IBM/FSD - July 1, 1977

o ASM
6.2.26.2

Argument Dictionary - None.
6.2.26.3

Local Variable Dictionary - None.6.2.26.4

Descri pti on - SANTIX saves the address of the member name string
from the PARM field of the EXEC card and makes it available when necessary
to update the index file. The model processor is entered from the system
through this routine. When it is first entered, it saves the address
of the contents of the PARM field of the EXEC card. The system had put
this address in register 1. After this save, control is passed to SAMAIN.

When the routine is called again later through its entry point SAUPTX from
SAINIT, the address of the string is restored to register 1 ready for
SAWTIX to use it and then SAWTIX is called to actually update the index
file using this string. Upon return from SAWTIX, control returns to

SAINIT without reentering SAUPTX.

6.2.26.5

PPL - See Appendix A.

6.2.26.6

Decision Tables and Algorithms - None.

6-74

6.2.27 SANTSA

6.2.27.1 Identification

o SANTSA - Initialize System Status Area Addresses

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.27.2 Argument Dictionary - None.

6.2.27.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

ACORE 3 1*4 Addresses of start of input commons,
start of model commons, and end of

model commons6.2.27.4

Description - The purpose of SANTSA is to initialize system
status area addresses. The input area commons (SCIFEL, SCIMAX, SCISL,

SCISYS, and SCITL) and the internal model commons (SCMFEL, SCMSL, SCMSYS,
SCMSL, SCMT, SCMV, SCMXTN, SCMFS, SCAMSG) lie in storage as two contiguous
blocks. The routine SADADD that reads the binary system data from
AGT. STRUC. SYSTEM must know the starting address and length of these
commons in order to do the read. Also, SACKR, the routine that writes
or reads a checkpoint record (which contains both blocks), must know the

starting address and length to do its reads and writes. This is

accomplished in^the following way. At linkage edit time, these two blocks
of commons are put in an overlay structure so that the addresses, their
starting, middle, and end addresses can be given names BEGCOM, IPCOM, and

ENDCOM. Also at linkage edit time, SSASAV serves to capture these addresses
of addresses. At execution time, this routine SANTSA is called from
SAINIT and contains a common called SSASAV containing one array ACORE of

dimension 3. Thus SANTSA knows the addresses. It then proceeds to

calculate starting addresses and lengths of the two blocks from the addresses
and passes them to SANSAV which will call SACKR to inform it of the

addresses and lengths it needs to do checkpointing and restarting and

SADADD to read the binary system data.

6.2.27.5

PPL - See Appendix A.

6.2.27.6

Decision Tables and Algorithms - None.

6-75

6.2.28 SANXTN

6.2.28.1 Identi f i cati on

o SANXTN - Initialize Transaction Data

o IBM/FSD - July 1, 1977

o PARAFOR
6.2.28.2

Argument Dictionary - None.
6.2.28.3

Local Variable Dictionary - None.6.2.28.4

Descripti on - SANXTN initializes the data in SCMXTN for vehicle,
trip, and system service transactions. First, all the variables in

SCMXTN are set to zero, except the. chain word of each which is set to

point to the next. Then the trip, vehicle, and system service available
lists are initialized.
6.2.28.5

PPL - See Appendix A.

6.2.28.6

Decision Tables and Algorithms - None.

6-76

6.2.29 SAPFEL

6.2.29.1 Identi f i cati on

o SAPFEL - Put Transaction on FEL

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.29.2 Argument Dictionary

|
VARIABLE

j
DIM

|
TYPE

| OE SCRIPT ION

A 1 \ —
I *4 ID Or TRANSACTION TO B E SCHEDULED

C OT U —
1 *4 SYoTEM EVENT OF THE NE XT EVENT FOR X TN

DhL i A — 1 ^4 THE TIME INTERVAL (IN
TO STAY ON THE FEL

C.U* »S) TH AT XTN IS

T Y —
1 nr* ^ lhL PRIORITY ORDlR IN

THE FEL
WHICH IT IS TO C OM E GF F

6.2.29.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

LINK - CNJ
*I

—

1

Number of link of current
trip/vehicle

TIME — -X1
—

1

Maximum of new time of XTN and

CLMINI

FMTHRD — 1*4 Holds ID of current XTN when

looping thru M/T

NMTHRD i

—

i

X -P Holds ID of next XTN when looping

thru M/T

FIRST “ 1*4 Holds ID of current XTN when

looping thru C/T

NEXT — 1*4 Holds ID of next XTN when looping

thru C/T

DTIME - 1*4 Delay time in queue or on FEL

XID - 1*4 XTN ID

TXN 2 L*1 Transaction type trip or vehicle

WASQD - L*1 Indicates XTN was queued

VID - 1*4 ID of vehicle being processed

6-77

6.2.29.4
Description - The purpose of SAPFEL is to put a transaction on

the FEL in correct time order. SAPFEL performs the scheduling of a

transaction on the future events list. SAPFEL is invoked by either the
scheduling of a transaction via the SCHED macro or via a direct call. The
transaction to be placed on the future events list is either placed in

the clock table or on the multiple thread list depending upon whether the
schedule time is within the current clock table interval or at some
extended time in the future. Scheduling on the clock table involves
finding the correct position for insertion and adding the transaction ID

to the clock table. Multiple thread scheduling requires either the
addition of the transaction to an existing multiple thread loop or the

creation of a new multiple thread loop. Concurrent with scheduling trip
and vehicle transactions, trip next event data is written to the trip
and vehicle file when required. A history of the trip's/vehicle's last
queued status is also written to the file.
6.2.29.5

PPL - See Appendix A.6.2.29.6

Decision Tables and Algorithms - None.

6-78

6.2.30 SARFEL

6.2.30.1 Identi fi cation

o SARFEL - Removes Next Most Imminent Transaction from FEL

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.30.2 Argument Dictionary - None.

6.2.30.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

XMTHRD - 1*4 Holds ID of next XTN when looping
thru M/T

XFIRST - 1*4 Holds ID of current XTN when
looping thru C/T

XNEXT - 1*4 Holds ID of next XTN when looping
thru C/T

6.2.30.4 Descripti on - The purpose of SARFEL is to obtain the next
imminent event to be performed from the Future Events List and update
the clock table and multiple thread list as necessary. A sequential
scan of successive entries in the clock table, beginning with the currently
active interval, is performed until a non-empty interval or the end of

the clock table is reached. If a non-empty interval pointer is found,
the first transaction chained within the interval is removed and returned
as the currently active transaction requiring event processing. If the

end of the table is reached during the scan, the first available multiple
thread FEL list is removed from the multiple thread chain and reloading
of the FEL is performed. The base time value of the FEL is reestablished
to the time of the multiple thread transaction.

Each transaction chained on the multiple thread list is removed and
chained in time order within the clock table interval given by:

I = 1 +

XTIME
xtn

- CLBASE

CLSIZE

6-79

Where:

XTIME^y^ = Scheduled time of transaction

CLSIZE = Time value encompassed by a clock table interval

CLBASE = Base time value for the clock table.

Once loading of the clock table is complete, the first available
transaction within the current table interval (first reloaded clock
interval) is returned as the currently active transaction requiring
event processing.

6.2.30.5 PPL - See Appendix A.

6.2.30.6 Decision Tables and Algorithms - None.

6-80

6.2.31 SASAMP

6.2.31.1 Identi f ication

o SASAMP - Sample Event Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.31.2 Argument Dictionary - None.

6.2.31.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

FOLLOW R*8 Keyword 'FOLLOWER' to write in

record
KNTL 3 1*4 Number of trip links
NBY 1*4 Number of bytes in follower
NFOLL 1*4 Number of followers
A 92 R*4 Data for performance summary

average times

6.2.31.4 Description - A sampling event causes statistics reflecting
modeling subsystem's status accumulated over an interval of time to be

recorded in the raw statistics file. This routine first calls SZINT to

calculate integrals and averages. It then checks to see if this is a

user specified multiple of intervals at which snapshot reports are to be
written and, if so, writes them using SAFINM. Next values are collected
in array A for the OP to use in computing average times for the performance
summary. Next the stationwide statistics are written, followed by those
relating to each station link and each trip link. Finally, SZZERO is

called to reset the statistics values so that they are ready for accumula-
tion during the next sampling interval.

Time integrals are computed during the sampling interval by:

1. Initializing the integral at the start of the sampling interval

to the negative of the product ofthe current time (clock)
value and the current occupancy of the element to which the

integral is associated. This is done in SZZERO.

2. Whenever the occupancy decreases during the sampling interval,

the integral is i ncreased by the product of the current time

value and the size of the occupancy decreases. This is done

in SZSTAT.

6-81

3. Whenever the occupancy increases during the sampling interval,
the integral is decreased by the product of the current time
and the size of the increase. This is done in SZSTAT.

4. At the end of the interval, the integral value is corrected by

increasing it by the product of the current time value and
the current occupancy. This is done in SZINT. At this point,
the integral contains the desired value.

Once sampling processing is completed, the sampling transaction is

scheduled to occur at the next sample time.

6.2.31.5 PDL - See Appendix A.

6.2.31.6 Decision Tables and Algorithms - None.

6-82

6.2.32 SASCTL

6.2.32.1 Identification

o SASCTL - Control for Vehicle Event Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.32.2 Argument Dictionary - None.

6.2.32.3 Local Variable Dictionary

VARIABLE
i

L> I Vi
i

TYP-:
ii

utsCKikTION

uLD - L i * 4 IHL VEHICLE'S CUKREN1 STATION LINK*.
(•'hbv.NT 1 V 4 THE NUMBER Or PASSENGERS ON A TRAIN.
v* rz. A L? i * 4 POINTER VO THE HEAD OF THE TRAIN CHAIN.6.2.32.4

Description - The purpose of SASCTL is to control the transition
of a vehicle transaction when the vehicle is moving from one station link
to another. SASCTL is given control by SAMAIN when the transaction that
comes off the FEL indicates that some event is about to happen to a

vehicle. First it runs SSMOD to perform the processing associated with
the event that has come off the FEL. Next, it determines if the vehicle
in question has completed all the events on the station link on which it

is currently traveling. If the vehicle is still undergoing event processing,
SASCTL does noticing since SSMOD put the vehicle back on the FEL to wait
for its next event. If the vehicle has completed all the events associated
with the link on which it is traveling, SASCTL then tries to get the vehicle
onto the next station link. It does this by using SSTEST to determine
the next link that should be entered and to determine if that link can
be entered. If the next link cannot be entered, SSTEST queues the vehicle
at the end of its current link. Otherwise, it runs SSLEAV to perform
processing associated with leaving the link on which it is traveling. In

the case where the next link is a sink and the vehicle is leaving the

simulated area, final trip and vehicle statistics are recorded and the

transactions used to represent the vehicle, and its onboard trips are

returned to the available list so that data areas can be reused as other
vehicles and trips. When the next station link is not a sink, but another
station link, SASCTL resets the vehicle event number to indicate that the

vehicle should undergo the processing associated with the first event on

the next link and calls SSMOD which will perform that processing and put
the vehicle back on the FEL.

6-83

6 . 2 . 32.5

6 . 2 . 32.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-84

6.2.33 SASPRM

6.2.33.1 Identification

0 SASPRM - Station Link Prompt Event Processing

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.2.33.2 Argument Dictionary - None.

6.2.33.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

LIST KMSL 1*4 List of vehicles to attempt to move
FLAG - L*1 Indicates self prompt is to be done
SL - 1*4 Station link being prompted
TEMP 1*4 Intermediate variable for bubble

sort
PASCNT - 1*4 Passenger count
QHEAD - 1*4 Pointer to head of train
VID 1*4 ID of vehicle currently being

processed
I

- 1*4 Index of mi sc. statistic to update
J - 1*4 Index of misc. statistic to update

6.2.33.4 Description - This routine serves to get vehicles moving
(viz., schedul e -them to spend time on the FEL), that had been queued.
The station link in question is recovered from a word of the active
(prompt) system service transaction which was scheduled by SSPMAC. Then
a list is built of all vehicles that may now be able to move. If the
prompt is a self prompt, then the list contains at most one vehicle,
the head vehicle on the subject link; otherwise, it may contain the head
vehicle on each link immediately upstream of the subject link. A vehicle
is put in the list if and only if it is queued and done with processing
on the link.

After the list is built, if the user has specified FIFO dequeuing
from upstream of the link (by using SLPF), the list is reordered on the

basis of the times the vehicles finished their last event on the link.

Otherwise, a priority situation exists and the list, which was originally
built in the order of priority that the user specified in listing upstream
links, is not reordered.

6-85

After the list of candidate vehicles is ordered, a control structure
similar to SASCTL is run through for each vehicle in the list. SSTEST is

run to determine if the vehicle can leave its current link. If it can,
SSLEAV is run to perform station link leave processing. If a sink follows
the current link, the vehicle transactions and onboard trip transactions
are returned to the available lists and statistics are collected. Other-
wise, SSMOD is called to commence station link processing on the next link

6.2.33.5 PPL - See Appendix A.

6.2.33.6 Decision Tables and Algorithms - None.

6-86

6.2.34 SATORG

6.2.34.1 Identi f i cati on

o SATORG - Move Arriving Trip

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.34.2

Argument Dictionary

i VARIABLE I
DIM

I
TYPE

|
LcbLKlPTlON

T i\ Iv4 ID UF TRIP THAT IS ORIGINATING

I

I

i

6.2.34.3 Local Variable Dictionary - None.

6.2.34.4 Description - The purpose of SATORG is to initialize a trans-
action for an arriving trip and run SUMOD to get it moving. First a

test is made to see if there is adequate room in the ticketing link to

accommodate the trip. If not, the trip is rejected and the rejection
recorded. If there is room and the trip is larger than a user specified
split size, then the trip is split into subtrips. For each such subtrip
a transaction is acquired from the available list, initialized to the

characteristics of the trip, and SUMOD is run to get the trip moving.

6.2.34.5

PDL - See Appendix A.

6.2.34.6

Decision Tables and Algorithms - None.

6-87

6.2.35 SATRD

6.2.35.1 Identi fication

o SATRD - Read Trip from Trip File

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.35.2 Argument Dictionary - None.

6.2.35.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

TIME - R*4 Time read from trip file
TEOF - L*1 End of file on trip file
TN - 1*4 ID of transaction gotten for new

trip
6.2.35.4

Description - The purpose of this routine is to read a trip
record and initialize its transaction. A transaction is acquired from

the trip available chain. The trip record is read into the fields of

the transaction. If the origin of the trip is not equal to the station

being simulated, it is skipped over and the next trip is read. Arrival

time is converted to clock units. The trip arrival system service
transaction is updated to contain the transaction number of the newly

arrived trip.

6.2.35.5

PPL - See Appendix A.

6.2.35.6

Decision Tables and Algorithms - None.

6-88

6.2.36 SAUCTL

6.2.36.1 Identification

o SAUCTL - Control of Trip Event Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.36.2 Argument Dictionary - None.

6.2.36.3 Local Variable Dictionary - None.

6.2.36.4 Description - The purpose of SAUCTL is to control the transition
of a trip from one trip link to another. SAUCTL is given control via
SAMAIN when a trip transaction comes off FEL and requires processing for

a trip link event. First it runs SUMOD to perform the processing associated
with the event for which the trip has spent time on the FEL. Next it

determines if SUMOD has set the data item ADONET to indicate that the
trip being processed has completed all of the events on its current trip
link. If the trip has not yet completed all events, SAUCTL processing
is complete for the time being since SUMOD returned the trip to the FEL
for the duration of its event. Otherwise, SAUCTL tries to advance the

trip to its next trip link. This is done by using SUTEST to identify
the next link and determine that the trip can be accommodated thereon. If

entry is precluded, SUTEST indicates that the trip has been queued.
Otherwise, when the trip can enter, SULEAV is invoked to process the trip
leaving its current trip link. In the case where there are no further
trip links, the-trip is prepared to enter the station's boarding queue
and SMTABQ is run to assure that a vehicle is moving toward the trip in

the case of a demand responsive environment. In the case of scheduled
service the trip is allowed to board a vehicle undergoing boarding if

the destination is compatible. When there are further trip links, SAUCTL
advances the trip to the first event as the next link. Then SUMOD is

invoked to perform the processing associated with the first event on the

next link and return the trip to the FEL for the duration of that trip

1 i nk event.

6.2.36.5 PPL - See Appendix A.

6.2.36.6 Decision Tables and Algorithms - None.

6-89

6.2.37 SAUPRM

6.2.37.1 Identi fi cation

o SAUPRM - Trip Link Prompt Event Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.37.2 Argument Dictionary - None.

6.2.37.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

TL - 1*4 Number of trip 1 i nk bei ng prompted
TLP - 1*4 Number of trip 1 i nk upstream of TL
T 1*4 ID of the trip to try to move

6.2.37.4 Description - This routine serves to get trips moving, viz.,

scheduled on the FEL, that had been queued. The trip link in question
is recovered from a word of the active (prompt) system service transaction
which was scheduled by SUPMAC. If the head trip on the link upstream of

the one in question is queued and done, then SAUPRM' s control structure
(similar to SAUCTL) is run to try to get the trip moving again. SUTEST
is entered to determine if the trip can leave its current link. If it

can, SULEAV is run to perform trip link processing. Then SSMOD is

called to commence trip link processing on the next link.

6.2.37.5 PPL - See Appendix A.

6.2.37.6 Decision Tables and Algorithms - None.

6-90

6.2.38 SAVORG

6.2.38.1 Identification

o SAVORG - Move Arriving Vehicle

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.38.2 Argument Dictionary

I
vakuble

(
dim

|
type

j
description

VN - 1-4 ID Or THE VEHICLE ORIGINATING

6.2.38.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

ASY - L*1 Indicates SAVORG called from SAASYN
instead of SAMAIN

EOF - L*1 End of file on vehicle file prematurely

TIME - R*4 Time read from vehicle file

SOUR - 1*4 Source number of current vehicle

QHEAD - 1*4 Flead vehicle in train

N
- 1*4 Number of vehicles in train

VNT - 1*4 Number of onboard trips

FN - 1*4 Number of unit vehicle file is on

TN - 1*4 Number of trip transaction

VNV 1*4 Number of following vehicle in

a train

6.2.38.4 Description - The purpose of SAVORG is to initialize a trans-

action for an arriving vehicle and run SSMOD to get the vehicle moving.

First, the source of the vehicle is determined. For vehicles read

asynchronously, the source is assumed to be the guideway. Next the

vehicle data associated with the vehicle transaction that was acquired

at the last execution of SAVRD for the source is initialized. Any onboard

trips are read from the vehicle file and trip transactions are acquired

and initialized for them. If the vehicle was the first of a train, then

the follower vehicles and their onboard trips are read, acquired, and

initialized. Then statistics are collected and SSMOD is called to get

the vehicle moving on its source link.

6-91

6 . 2 . 38.5

6 . 2 . 38.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-92

6.2.39 SAVRD

6.2.39.1 Identi f i cati on

o SAVRD - Read Vehicle from Vehicle File

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.39.2 Argument Dictionary - None.

6.2.39.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

TIME - R*4 Time read from vehicle file
J - 1*4 Source of the vehicle
FN - 1*4 Number of unit vehicle file is on

VEOF 3 L*1 End of file on vehicle files
VN 1*4 Number of transaction gotten

for this vehicle

6.2.39.4 Desrription - Read a vehicle record and initialize its trans-
acti on. A transaction is acquired from the vehicle available list chain
The vehicle record is read into the fields of the transaction. Arrival
time is converted to clock units. The vehicle arrival system service
transaction has the transaction number of the newly arrived vehicle
stored in its associated data words.

6.2.39.5 PPL - See Appendix A.

6.2.39.6 Decision Tables and Algorithms - None.

6-93

6.2.40 SAWTIX

6.2.40.1 Identi f i cati on

o SAWTIX - Write Index File Update

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.40.2 Argument Dictionary

l
DIM |

TYPE
|
DESCRIPTION

1*2 NUMbfc'R OF CHARACTERS IN

R*8 UP TO 8 CHARACTER NAME
FILES

6.2.40.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

MONTH - 1*2 Month of year
DAY - 1*2 Day of year
YEAR - 1*2 Year
HOUR - 1*2 Hour of day
MIN - 1*2 Minute of hour

| VAK I nbLh

COUNT
SIR 1 NO

ST R I NG
OF SAMPLE & CKPT

6.2.40.4 Description - SAWTIX first parses the parm field to get individ-
ual names. Then DAYTIM is called to get the date and time. NExt the
load module name, date and time are written to the index file. When
entry SAWTIW is called (from SAFINS) the files that were used in the run

are listed in the index.

6.2.40.5 PPL - See Appendix A.

6.2.40.6 Decision Tables and Algorithms - None.

6-94

6.2.41 SAZNIT

6.2.41.1 Identification

o SAZNIT - Initialize Statistical Variables

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.41.2 Argument Dictionary - None.

6.2.41.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

NBY - 1*2 Number of bytes in first follower
record

FOLLOW “ R*8 Keyword 'FOLLOWER 1

to write in

record
KNTL - 1*4 Number of trip links
KNSL1 — 1*4 KNSL

6.2.41.4 Description - SAZNIT initializes statistical variables and
writes the first records to the raw statistics file. This routine
begins by initializing the status type statistical variables. These are
the only statistics that will not be reset in SZZERO every sample. Here
they are the number of entities in each state. Then SZZERO is called to

initialize the remaining variables. Next, SZHDR is called to write the
first header record to the raw statistics. Lastly, the first follower
record containing the number of station links, trip links, clock units

per minute, clock units per sampling interval, station link types and
five input parameters describing the configuration are written to the

raw statistics file. This data is needed by the output processor in

determining the location of data in subsequent records written by SASAMP.

6.2.41.5 PPL - See Appendix A.

6.2.41.6 Decision Tables and Algorithms - None.

6-95

6.2.42 SCHED

6.2.42.1
Identification

SCHED - Schedule a Transaction for an Event Completion
Time Macro

o

o

IBM/FSD - July 1, 1977

PL/I
6.2.42.2

Argument Dictionary

| VAkI ABLc | DIM
|
TYPt

|
UESCklPTION

I

INDE X

TYPl
1*4
C*1

MLVnT
DEL'I A

1 *4

1 *-4

YrxT Y I *4-

VAkIABLc NAME
TY HE OF SC HE DU

s = station
T - TRIP LIN
NULL = Q7HER

EVENT NUMBER F

TIME UN THE PE
IF DELTA IS NE
UR DEN RELATIVE
PEL AT THE SAM
THROUGH 9. 0

LOWEST PR1URIT

OF ENTITY TO BE SCHEDULED.
LED EVENT (OPTIONAL):
LINK EVENT FOR A VEHICLE
K EVENT FOR A TRIP

OR WHICH INDEX IS ON THE F izL

L IN CLOCK UNITS (ZERO ASSUMED
GAT I VE

.

TO OTHER TXNS COM MING OFF THE
E TIME. PRIORITY VALUES FROM 0

- HIGHEST PRIORITY AND 9 IS
Y. (OPTIONAL? DEFAULT = 0)

6.2.42.3

Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT
M

PRTY

C

C

C

Constructed FORTRAN code
Hold margin pointer
'O' default priority

6.2.42.4

Description - The purpose of SCHED is to schedule a transaction
for an event completion time to come off of the FEL. This macro generates
code which when executed uses MULTICK to ensure that the entity is not
already engueued and if not calls SAPFEL to put the entity on the FEL.

6-96

6 . 2 . 42.5

6 . 2 . 42.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-97

6.2.43 SERROR

6.2.43.1 Identification

o SERROR - Write Error Message and Continue or Terminate

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.43.2 Argument Dictionary

V A f\ I ABLE |
DIM

|
T YPE I

DESCRIPTION

fcR K G r» I

V. Ob t\U —
I *4 ERROR MESSAGE NUMBER

MSG ' > L* 1 MESSAGE TEXT
M St Vtk —

I T4 MESSAGE SEVERITY l 1= 1 * 2 = W * 3= S

)

6.2.43.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

PGM 2 1*4 Error message prefix
MCLOCK - 1*4 Clock in seconds
MSG 2 L*1 Message text character, used to

count characters until semicolon
SCLN

;
L*1 Semicolon (used to indicate end

of message)
TYPE L*1 Message level character (info,

warning, severe)
MSGTYP - L*1 Message type
TERM - L*1 Terminate simulation

6.2.43.4 Description - The purpose of SERROR is to write an error message
when an anomalous situation arises and continue or terminate. This begins
by determining the length of the message in characters. (When called,
the message text is required to be in quotes and terminated by a semicolon.)
Next, this text is printed together with the standard text line appropriate
to each severity:

6-98

SEVERITY TEXT

1 (Information) This condition may be acceptable to the user.

2 (Warning) This condition must be corrected prior to the

next run.

3 (Severe) Execution cannot proceed beyond this point.

This is followed by the value of the clock. Next the number of messages
issued by ID number and severity class are incremented. If either the

message type was severe or the number of informative, warning, or both
type messages exceeded a compile time maximum (KMMSGI, KMMSGN, KMMSGS)
or the number of messages of any one given ID number exceeded a compile
time maximum (KMMTYP), then the simulation is terminated; otherwise,
it is continued.

6.2.43.5 PPL - See Appendix A.

6.2.43.6 Decision Tables and Algorithms - None.

6-99

6.2.44 SMBRD

6.2.44.1 Identi f i cati on

o SMBRD - Planning Trip Boarding

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.44.2 Argument Dictionary

i
•

|
V Ah I ABLE I

DIM
|

T YPt
|
OLbCRlPTiON I

~V - 1*4- SOLITARY VEHICLE Oh LEAD VEHICLE OP A TRAIN

6.2.44.3 Local Variable Dictionary

i

j
VARIABLE

| DIM
|
TYPE

j
DESCRIPTION

MAT LH

CvHEADV
CHECK.

PULL
T SEE OR
T ID

Vl.EFOR
V 1 D
S T F" l R

ONE
T tt Li

1*2 INDICATES WHETHER CR NOT THE VEHICLE AND
TRIP ARE COMPATIBLE:

1 =: MATCH
2 - NO MATCH

1*4 TAIL OF THE TRAIN CHAIN
L * 1 INDICATE^ WHETHER OR NOT The COMPATIBILITY OF

TRIP AND VEHICLE HAS BEEN TESTED:
T - WAS TESTED AND THEREFORE PROCEED TO NEXT

TR IP ,

r - WAS NOT TESTED THEREFORE TRY THE NEXT
VEHICLE

.

L * 1 NOT USED
1*4 PREDECESSOR TRIP IN uLOOP BOARDING QUEUE
1*4 A TRIP IN THE bOARDlNG QUEUE
1*4 PREDECESSOR VEHICLE IN GLQCP TRAIN
1*4 A VEHICLE IN THE TRAIN
1*2 POINTER TO A STATION IN THE VEHICLE’S STATION

ROUTE LIST
1*2 IN TEGEk*2 VERSION OF THE CONSTANT 1

1*2 INTEGER*^ VERSION OF THE CONSTANT 2

6.2.44.4

Description - The purpose of SMBRD is to build a list of trips

to board the vehicle being processed or each vehicle in the train. In

the case of demand responsive single party service, the trip at the head

6-100

of the boarding queue is selected (if there is one); it is dequeued from

the boarding queue and enqueued into the vehicle's boarding list.

In the case of demand responsive multiparty service, if the vehicle
is empty, then the trip at the head of the boarding queue is put on the

1 i st.

For all other trips in the boarding queue, a test is made to see if

the trip can fit on the vehicle and if so, a compatibility test is made
using a random number and a user specified probability of compatibility.
If it is determined that the trip is compatible, then the trip is dequeued
from the boarding queue and enqueued into the boarding list of the vehicle.

This process continues until either there are no more trips in the boarding
queue or the vehicle is at capacity.

In the case of scheduled service, starting with the first trip in the

station's boarding queue and the first vehicle in the train, each vehicle
in the train is checked to see if the trip can fit on the vehicle. When
a fit is found, a further check for destination compatibility is made.

Should there be insufficient space on the train for the trip or incom-

patibility, the same search proceeds for the next trip in the boarding
queue, and so on.

When a trip can fit onto the train, one of three compatibility tests
can be selected by the user. The sampling test uses a probability of
compatibility to determine if the trip is compatible. The second test,
the route test using the route assignment table, is invoked whenever this
one-route-per-destination table has been provided by the user. The route
of the vehicle is compared to the one route allowed for the trip based
on the trip's destination. When the route assignment table has not been
specified by the user, the third method to check compatibility is used.
The list of stations on the vehicle's route is evaluated to see if any
one of them is the trip's destination. A trip than can fit on the vehicle
and has a compatible destination is dequeued from the boarding queue and
enqueued onto the boarding list of the vehicle. During this processing
the total number of passengers that are to board each vehicle is maintained
for later use in computing vehicle boarding time.

6.2.44.5 PPL - See Appendix A.

6.2.44.6 Decision Tables and Algorithms - None.

6-101

6.2.45 SMDBRD

6.2.45.1 Identification

o SMDBRD -^Planning Trip Deboarding

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.45.2 Argument Dictionary - None.

6.2.45.3 Local Variable Dictionary

i T

| Vmk 1 a6l£ 1 DIM
I
TYPE

j
DESCRIPTION

|

X PER

1 BE PCJR

I ID

1*2 INDICATES WHETHER UR NOT A TRIP WILL TRANSFER:
1 = TRANSFtR
2 - NO TRANSFER

1*4 PREDECESSOR TRIP IN GLDOP VEHICLE TRIP QUEUE
1*4 A TRIP IN THE VEHICLE'S TRIP QUEUE6.2.45.4

Description - SMDBRD plans the deboarding of one vehicle
building two lists of trips:

1. Those trips that deboard and leave the system.

2. Those trips that deboard and transfer; a count of passengers
deboarding is also maintained.

For each trip onboard the vehicle, a test is made to see if the
destination of the trip is equal to the station being simulated. If so,

the trip is dequeued from the onboard queue and enqueued into the deboard
and leave list. If this is not so, then a test is made to see if the trip
is to transfer at this station. A user specified probability of transfer
is used together with a random number to determine if the trip is to

transfer. If it is to transfer, it is dequeued from the onboard queue
and enqueued into the deboard and transfer list. During this process,
the total number of deboarding passengers is accumulated.

6.2.45.5 PPL - See Appendix A.

6.2.45.6 Decision Tables and Algorithms - None.

6-102

6.2.46 SMDETR

6.2.46.1 Identi f i cati on

o SMDETR - Detrain Vehicles from Lead Vehicle of a Train

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.46.2 Argument Dictionary

VArilAULE |
DIM |

TYPE;
|

DE S CA I PT I ON

^ 1*4 LEAD VEHCLE lih A TRAIN (UR COULD
INDIVIDUAL VEHICLE)

6.2.46.3 Local Variable Dictionary

BE AN

VARIABLE
|
DIM

1
TYPE

1
DESCRIPTION

1

uhEAD —
I *4 TAIL lO

LIST
A TEMPORARY STATION LINK MEMBERSHIP

GHE ADZ —
1 A4 TAIL TO THE TRAIN CHAIN

V I D —
I *-4 VEHICLE being processed

6.2,46.4

Description - The purpose of SMDETR is to detrain all vehicles
from the lead vehicle of a train. Detrain the following vehicles from
the lead vehicle in a train maintaining their original order, adding
each follower to the station link membership list, and assigning them
the attributes of the lead vehicle.

6.2.46.5

PPL - See Appendix A.

6.2.46.6

Decision Tables and Algorithms - None.

6-103

6.2.47 SMDIVF

6.2.47.1 Identi f i cati on

o SMDIVF - Diverge Functions

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.47.2 Argument Dictionary

i

(VARIABLE
|
DIM

|
TYPE

j
PE bC k 1 P7 i ON

V -1*4 id Or THE VEHICLE bE IN6 PROCESSED

6.2.47.3 Local Variable Di cti onary

VARIABLE DIM TYPE DESCRIPTION

SLN KMSL 1*4 List of station links found in search

6.2.47.4 Description - The purpose of SMDIVF is to create a list down-
stream links that is ordered by preference and contains only feasible
candidates for entry. The structure of SMDIVF is a CASE block where the
data item that controls which case is run is the user's specification of

the diverge function to be used when exiting the current link. There
are six diverge functions within SMDIVF corresponding to its six cases.

A diverge function is a rule by which the simulation will decide
which station link a vehicle will enter when the vehicle is at a diverge.
For example, in Figure 6-3, the diverge function used for link A will
decide which of links B, C, or D a vehicle will enter. (In the case
where there is just one link downstream of another, no diverge function
is used since there is no decision to be made.)

6-104

Figure 6-3. Sample Diverge

Often there are a number of diverges in a station to be modeled.
The user specifies the number of a preprogrammed diverge function on

each station link that has a multiple number of links downstream of it.

The following discussion describes the six available diverge functions
comparing their common input data and processing methodologies and con-

trasting their link ordering decision rules. In the event other rules
are desired, the user may develop other diverge functions, add them to

the simulator code, and request them at execution time.

All six diverge functions can use the following data:

1. Next stop of the vehicle (station number)

2. Di vert-to-dock indicator (0 = divert to dock, 1 = go the other
way)

3. Sink of the vehicle, viz., the vehicle's station exit mode,

(1 = guideway, 2 = modal exit before dock, 3 = modal exit
after dock).

All six diverge functions have the same input and output methodology

1. Input -- The main input to a diverge function can be thought
of as the list of all links immediately downstream of the link
on which the vehicle is currently located.

2. Output -- The main output of a diverqe function can be thought
of as the input list with:

a. Incompatible links omitted (e.g., the inpiut- to- storage
link eliminated for a vehicle that is to divert to the

dock)

6-105

b. The remaining links ordered in order of preference (e.g.

,

minimum occupancy first).

This output list is then used in the following way. Each link on

the list is tested in the returned order to see if it can be entered.
If the entry test fails due to failure at link entry, congestion, headway
zone occupancy, etc., then the next link on the list is tested and so on

until either a link is successfully entered or until the list is exhausted
(in which case the vehicle queues on its current link). This ability to

test other links if one is impassible allows the vehicle to be cleared
out of the way when it would otherwise be caught waiting for that one
link to recover and thus determines where vehicles will travel in these
al ternate H i nk situations.

The first four diverge functions use a search function (SMDIVS) as

a service routine to look for links of a specific type. The service
routine uses:

1. The list of downstream links with their associated link types

2. The link type for which the diverge function is searching

3. An arming indicator.

This search routine builds a list of all downstream links of the

requested type. This list is returned to the diverge function. If no

links of the requested type are found and the indicator is armed, then

the simulation is terminated. So, for example, if the user accidentally
input vehicles to divert to storage (from, say a DESM run) and there was

no storage, this condition would activate the arming indicator to terminate
the simulation. This generalized search process is used in the following
diverge functions and will terminate the run if the required link type
is not found.

Diverge Function No. 1 -- This function is for the diverge at the
entrance to the station. If the vehicle's next stop is the station
being simulated, the input ramp is found and made the first item in the
list to be returned. Next, a bypass link is found and added to the

list. If the vehicle is not stopping at the station, bypass link alone
is listed. See Figure 6-4.

Diverge Function No. 2 -- The function is for use at the end of the

input ramp, modal input before processing, and storage to input link.

If the sink of the vehicle is the modal output before processing, then

this link is found and listed.

6-106

Use: End of approach link to station

Ordering

:

Is vehicle stopping at station?

BYPASS LINK INPUT RAMP
BYPASS LINK

Figure 6~4a. Diverge Function //I

Use

:

End of Input ramp

End of modal-input-before-processing link

End of storage- to-input link

Ordering

:

Is vehicle's sink modal output before processing?

Y
N/

Will it divert to storage? SINK LINK

INPUT-TO-STORAGE LINK

Continue
Any * input
Queue links?

N

D^CK LINKS INPUT QUEUE LINKS
(ordered by pseudo-occupancy)

(ordered by occupancy)

Figure 6“4b. Diverge Function #2

6-107

Use: End of dock links (after board)

Ordering

:

Is the vehicle's sink modal output after processing?

Y

Will it divert to storage SINK LINK

DOtK-TO-STORE LINK
Continue

Are there input queue links?

N / \ V

OUTPUT RAMP LINK OUTPUT QUEUE LINKS (ordered by occupancy)

Figure 6-4c. Diverge Function #3

Use: End of Storage

Ordering

:

Is the vehicle^to divert to the dock?

N.

STORAGE -TO-OUTPUT LINK STORAGE-TO-DOCK LINK

Figure 6
- 4d. Diverge Function #4

Use: As_applicable

Ordering: DOWNSTREAM LINKS (by occupancy)

Figure 6-4e. Diverge Function #5

Use: As applicable (generally before docking links)

Ordering: DOWNSTREAM LINKS (by pseudo-occupancy)

Figure 6~4f. Diverge Function #6

6-108

Otherwise, the input queue links are found and ordered by occupancy.
If none were found then dock links are found and ordered by pseudo-
occupancy (the number of blocked positions on the link). If the vehicle
is to divert to storage, then this list of input queue links or dock
links is prefaced by an i nput-to-storage link. See Figure 6-4.

Diverge Function No. 3 -- This function is for use at the end of dock
links (after the board event). If the vehicle's sink is modal output
after processing, then this link type is found and listed.

Otherwise, the output queue links are found and ordered by occupancy.
If none are found then an output ramp found. If the vehicle is to

divert to storage then a dock-to-store link is found and inserted above
the list of output queue or ramp links. See Figure 6-4.

Diverge Function No. 4 -- This function is for use at the end of the
storage link. If the vehicle is to divert to the dock, then a store-to-
dock link is found and listed alone. Otherwise, a store-to-output link
is found and listed alone. See Figure 6-4.

Diverge Function No. 5 -- This function orders the downstream links by
occupancy regardless of type. See Figure 6-4.

Diverge Function No. 6 -- This function orders the downstream links by
pseudo-occupancy regardless of type. See Figure 6-4.

6.2.47.5 PPL - See Appendix A.

6.2.47.6 Decision Tables and Algorithms

6-109

6.2.48 SMDIVO

6.2.48.1 Identification

o SMDIVO - Order Station Links for Diverge Function

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.48.2 Argument Dictionary

V] A B L b

i

|
D i Y!

|
TYP

I
CESCKl PT ION

oLN K ’-iSL I LIST OF LINKS TO BE ORDERED
I ND I *4 INDICATOR AS TO WHETHER ORDERING SHOULD bE

BY OCCUPANCY OR PSEU DO-OCCUP ANDY

6.2.48.3 Local Variable Di ctionary

VARIABLE DIM TYPE DESCRIPTION

SLN KMSL *(
—

l

List of station links found in

search

TEMP — 1*4 Intermediate variable used in

bubble sort

6.2.48.4

Description - Order a list of station links by occupancy or

pseudo-occupancy. This routine does a bubble sort on the station links

in the input list based on either their occupancy or pseudo-occupancy.

The links with the minimum occupancy will be the first on the returned

1 i st.

6.2.48.5

PPL - See Appendix A.

6.2.48.6

Decision Tables and Algorithms - None.

6-110

6.2.49 SMDIVS

6.2.49.1 Identification

0 SMDIVS - Search for Link of Specific Type for Diverge Function

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.2.49.2 Argument Dictionary

VAkI A5C£
t
DIM

Ij

TYPE
|
DESCRIPTION

V —
1 44 ID Or THE VEHICLE DEINc PROCESSED

TYPC — 144 TYPE (»SlTYPE*) OF LINK TO 3E SEARCHED
ARMED 1 44 INDICATOR AS TO WHETHER OR NOT SIMULATION

SHOULD STOP IF AT LEAST ONE LINK OF GIVEN
TYPE' IS NOT FOUND

SLN KMSL 1 44 (.OUTPUT) LIST OF LINKS OF GIVEN TYPE THAT
ARE IMMEDIATELY DOWNSTREAM OF THE CUkRENT
LINK OF THE VEHICLE bEINc. PROCESSED

6.2.49.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

SLN KMSL 1*4 List of station links found in

search
NEXT 1*4 Pointer to next downstream link

6.2.49.4 Description - SMDIVS forms a list of all links of a given
type that are immediately downstream of a given link. The list of
links downstream of the current l.ink of the vehicle being processed
is scanned for links of the requested type. As such links are found
they are noted in the output list. If there are none found and an
input indicator is set, the simulation terminates.

6.2.49.5 PPL - See Appendix A.

6.2.49.6 Decision Tables and Algorithms - None.

6-111

6.2.50 SMENTR

6.2.50.1
Identification

o SMENTR - Entrain Following Vehicles to a Lead Vehicle

o IBM/FSD - July 1, 1977

i

I

!

i

o PARAFOR

6.2.50.2

Argument Dictionary

|
VARIABLE

I
DIM

I
TYPE

|
DE S CK I PT I Ol\'

V - 1*4 I HE LEAD VEHICLE ON THE LINK (IT CAN'T 3t
QUEUED) to which following vehicles WILL BE

E NT KA 1 NED

•

6.2.50.3

Local Variable Dictionary

|
VARIABLE

i
DIM

I
TYPE

1
DESCRIPTION

U M L_ A D - I v4 TAIL
LIST

TO A TEMPORARY STATION LINK MEMBERSHIP

^ME ADZ — I * 4 TAIL TO THE TRAIN CHAIN

I

6.2.50.4

Description - The purpose of SMENTR is to entrain as many
vehicles as possible (up to a user specified limit) to the head vehicle
on the link at launch time, provided they have the same next stop. For

each queued vehicle which is either done or awaiting launch and which
is immediately behind the head vehicle, chain it to the lead vehicle
until either the limit on the number of vehicles in a train is reached
or the vehicles have different next stops. For each entrained vehicle
the train length of the head vehicle is increased by one, the trailing
vehicle is chained to the one in front of it, and the trailing vehicle
is removed from the membership chain of the current link.

6.2.50.5

PPL - See Appendix A.

6.2.50.6

Decision Tables and Algorithms - None.

6-112

6.2.51 SMEVM

6.2.51.1 Identification

o SMEVM - Empty Vehicle Management

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.51.2 Argument Dictionary - None.

6.2.51.3 Local Variable Dictionary

VARIABLE
|
DIM

|
TYPE

|
DC SCRIPT ION

NEED - 1 *2 INDICATOR I HAT VEHICLE IS NEEDED AT ANOTHER
ST AT TUN

1 = NEEDED
2 - NOT NEEDED

ONE - 1*2 1NTEGER*2 VERSION OF THE CONSTANT i

7 f.Q - 1 *2 IN T E cE k* 2 VERSION Or THE CONSTANT 2
6.2.51.4

Description - The purpose of SMEVM is to determine whether an

empty vehicle is to be sent to local storage or out of the station. If

policy dictates that all vehicles be sent out of the station, an indicator
associated with the vehicle is set to indicate to the diverge function
(SMDIVF) that the vehicle is not to be diverted to local storage.

If policy dictates that an attempt should be made to send the vehicle
to local storage, then a test is made to see if the link representing
local storage is at capacity. If it is at capacity, then the vehicle
is marked not to divert into local storage. If space is available on
the storage link, then a test is made to determine if there is a simulated
need for the vehicle at another station. This test is made by randomly
sampling a user specified distribution of the vehicle being needed else-
where. The vehicle is then marked accordingly to divert to local storage
or not.

6.2.51.5

PPL - See Appendix A.

6.2.51.6

Decision Tables and Algorithms - None.

6-113

6.2.52 SMGDIP4

6.2.52.1 Identification

o SMGDIP4 - Generalized Data Input Package - Define Layout of

Input Common Areas

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.52.2 Argument Dictionary

VAK’IAd eE |
D I M |

TYPE
j
JhSCRlHTiON

ip ^

:

NAM t.
— R =4- a PAKAML TER NAME

KMT - Pv-8 FOkMAT OF DATA
i P A i_

—
1 *4 FIRST DIMENSION LOWER BOUND

1 P A f i
—

I ^4 FIRST DIMENSION UPPER EOUND
I POL. — I *-4 SECOND DIMENSION LOWER BOUND
I hdH —

1 *4 SECOND DIMENSION UPPER BOUND
IRCL —

I £4 THIRD DIMENSION LOWER BOUND
I PCM —

1 *4 THIRD DIMENSION UPPER BOUND
I PD L _ — I *4 FOURTH DIMENSION LOWER BOUND
I PD H —

I *4 FOURTH DIMtNSlON UPPER BOUND

6.2.52.3 Local Variable Dictionary - None.

6.2.52.4
Package.

Descrfpt
The GDIP

ion -

i s a

SMGDIP4 (GDIP) is the Generalized Data Input
collection of routines that provides the user

with the capability of reading data into COMMON variables with a minimum
of programming effort. GDIP eliminates the need for pre-initializing data
areas prior to program execution and provides the ability to change data
formats without requiring modification to embedded read statements con-
tained in executable program modules. The GDIP provides the following
features, which are controlled by the user at program execution time:

1. Any rectangular section of any array may be modified.

2. The data items to be loaded are on input cards of the user's
own format, which is specified at execution time.

6-114

3. A "repetition factor" allows the loading of consecutive data
elements with a single value specification.

The package can accommodate arrays having up to four subscripts
(dimensions).

When the GDIP is invoked by a CALL, input cards supplied by the user

of the CALLING program are read, and the desired data loading f uncti ons -are

performed. Two categories of functions are provided: end-input and
read-data. The card formats for these functions are defined in the

User 1

s Manual

.

The statement:

CALL NDBOR

invokes GDIP. This statement may be invoked as desired, but is typically
issued during program initialization. However, in the DSM, GDIP is

invoked each time asynchronous data initialization is requested to modify
existing simulation data definitions. Each such CALL to GDIP results in

one or more input cards being read. from the standard system input data
stream (FT05F001).

Figure 6-5 illustrates a sample ALC routine, by which the necessary
definitions of variables and COMMON areas are made. This routine, when
assembled, provides addressability of each data item in the common areas.
Any format modifications required are easily accommodated by merely
respecifying the definition data in the routine. No modifications are
required to the I/O portion of GDIP or the invoking program. The significant
features of this routine are:

1. The statement:

NODIMENS 4

defines the maximum number of dimensions on any array to be

four. This value may be changed only with corresponding changes
to NDBOR and by providing new routines named GDIPFn, GDIPHn,
and GDIPXn (internal routines currently provided with n = 4) to

allow data formatting into higher dimensioned arrays.

2. Each COMMON area requiring GDIP data loading is defined by a

set of cards, consisting of the following:

a. A card to name the COMMON area, in the form:

common-name CSECT

6-115

GDI P

GKML
GKMS
G KMV
GKMX
GKMT
GKMCRT .

tKMVFAT
GKMCRP
UVFL AG
GKMCLT

A

G KMM
GKM I

GKMS1

LNKCOM

S TNCOM

S Y5COM

T RPC GM

VFHCOM

F EC COW

SN2COM

V 2C OM

TRRQRX I

T

T1TLF •GENERALIZED DATA INPUT PROGRAM* 00 0 1 0000
NODIMENS 4 00020000
SPACE S 00030000
LCLA G K ML. GKMS. GKMV. GKM X, GKMT, GKMCRT, GKMVEAT.G KMC RP.GK ME LAG,

G K M S 1 * GK MM , GKM

I

X00040000
00050000

L CL A GK MCLT A 00060000
SETA 100 00070000
SETA 4 0 00080000
SETA 2500 00090000
SETA 3500 00100000
SETA 2500 00 1 10000
SETA 4 00 00 1 20000
SETA 200 00 130000
SETA 6 1 00 140000
SETA 300 00 150000
SE TA 1000 00 1 60000
SETA 40 00 170000
SFT A 1 00 00 18COOO
SE TA GKMS+

1

00 190000
SPAC E
C SEC T

5 00200000
00210000

COMN E.LTIMT,(GKML).LTIMHZ,,LTIMRE. 00220000
C OMN H,LSPE:ED.,LCAP.(GKML) ,LOCC,(GKML) .LFNTY , (GK ML ,2) ,

LS NEXT, (GKML).LEQHD,(GKML),LSLT,(GKML, GKMS),
LD 1ST , (GK ML) .LMERGN, (GKML)

X00230000
X 00 24 0000
00250000

COMN X ,LF A IL i (GKML) *L PR 1 OF< , (GKML) ,LFHZ , (GK W L) 00260000
SPACE
CSFCT

3 002 70C00
0028 0000

COMN F.STIM HZ, ,STIMEN,,ST1MID,,ST1MIS,.STIMDS,.ST1 MED,,
ST I MEM , , ST IMDE , . ST 1 ME X , .SUSTN , (GKMS

)

XO 0 2 90 0 0 0
003C000G

COMN H , SC A° I A , (GKMS) .SCAPtiA, (GKMS) .SCAPSA , (GKMS) .

SCAPOA , (GKMS.) * SOCC I A , (GKMS), SOCCDA, (GKMS) .SOCCSA, (GKMS)
SOCCOA .(GKMS).SQTI . (GK«S) ,SOTD,(GKMS) ,SCTSS.(GKMS),
SGTSD.(GKMS) .SOTSE, (GKMS) .SEOHO, (tKMS)-»SOTTPP, (GKMS).
S I L I NK , (GKMS) . SELI NK , (GKM S) .STRPT , (GKMS) , STRPU , (GKMS) ,

S AL T , { GKMS

)

X00 3 1 0000
.X00320000
X00330000
X00340000
X0035C000
0036C 000

COMN X . SFHZ . (GKMS

)

0037 COCO
SPACE
C SEC T

3 003P0C00
00390000

COMN F.KNL, ,KNS. , KNV , , V A C T IV, .TACTIV, .KNCRT, ,KNVt AT ,,KNCRP, . X00400000
v_ ® * V. O 1 Z. L. * • V- I l J v. J (« » \..L_ V_IV • * r I rX C. I « t L INf

KSEFD,,KWTIMW. , KNM , , KM , , NUC L K . . K T SE R V ,

:nwN f,ksatno,.kteirp,,kthrn,,krqiyl.
I'MN H .K WTT AB , (GKM I ,GKMM)

X , C E L A G , (GKMFLAG).KSTATU,
Z OMN
:omm
SPACE
Z SFC T
CO'XN
COMN

SPAC F
:SEC T

:omn
:omn

F» TAVA IL » , T T 1 M E » (G K M T)

H , TOR I G. (GKMT) .TOE ST . (GK MT) . TPASS , (GKMT) ,TCHA IN , (GKMT) ,

TCASGN, (GKMSiGKMS)
3

F , VT 1 ME . (GKMX)

H

COMN
CSFC T
comn

C omn
C SECT
COMN
CSFCT
COMN
C omn
COMN
FNOFF S

CALLS

F ND

. . . .VEACP, (GKMVFAT).VAVAIL. .VCLAST, (GKMCRP)
H.VGOTu, (GKMX) . VCHA IN , (GKMX) , VCURR . (GKMX) , VC ASF , (GKMV)
VQT , (GKMV) »VPASS * (GKMV) . V N X S T N , (GKMV) .VCYCNI), (GKMV) .

VCYCPO, (GKMV). VC LIST. (GKMCRT) . VCPTR . (GKMCRP),
VF APS . (GKMVE AT)

" * ~

VC YCHvY , (GKMCRP)

X , vT-eos . (GKMV)

. I GKMCR T) . VCPTR
, V^ AP , (GKMS 1 l.VCAP,,
VN VC YC . (GKMCRP

)

, VGuE r; , ((.KMV)

F,CL r, ASE.,CLBIG.,CLPOS,,CLSMAL,.CLSCAN,,CLV!f.1

] , , CLNUM , ,

CLS17E,.CLSTAT,(3.1G)
H.CLTAEL. (GKMCLT A)

F . SCAPSP . (GKMS

)

F , VCL A 5M , (GKMCRP.GKMS

)

H* VULT!) * (GKMV) *TSST * (GKMS. GKMS) , VC T I ME . (GKMCRT)
X . TCN’l S .< GKMS . GKMS >

ER . (F •

RET URN
^SSC’ARRAY NAME NUT FOUND IN T A PL F ; * , F • 2 •)

X 0 0 A 1 0000
00420000
00430000
OOAAOOOO
00450000
00A60000
00470000
OOAfiCOOO

X004R0000
00500000
OOS1 0000
00520000
0 0 (S3 0 00 0

X005A0000
X005‘ 0000
XOOSoOOOO
X00570000
00540000
00590000
OOhOOOOO

XC061 0000
0 0 62 0 0 0 0
00630000
00640000
00650000
006.60000
00670C00
0065 0000
0 0 640 00 0
00700000
0071 0000
00 72 0 00 0
00730000

Figure 6-5. GDIP Common Data Definition

6-116

b. One or more cards to define the variables in COMMON area.

These definitions must be in precisely the same order as

in the correspond!' ng FORTRAN COMMON statement since they
are used to define a data map of each variable in the common
area such that addressability can be established to any
data position. The format of each card is:

C0MN1, name, dimensions, (name-2 ,dimensions-2
,

. . . .)

Up to 20 variables may be defined per card, provided their
data item lengths are the same. The field "1" must be one

of the fol lowi ng:

1 Variable type(s)

F REALM, INTEGERS, and L0GICAL*4

H INTEGERS

X LOGICAL^

The dimensions field is of the form:

(first-dimension, . . ., fourth-dimension)

If a variable has fewer than four dimensions, only the
necessary ones are given. If the variable has no dimensions
(i.e., is unsubscripted)

,
then this field is null. However,

the comma must always be supplied, as illustrated by
Figure 6-5.

3. The statement:

ENDEFS

marks the end of all the definitions and causes the data mapping
to be established. Currently, up to 200 variables may be defined.

4. The pair of statements:

ERRORXIT . . .

B RETURN

defines how errors are to be handled. If GDIP encounters an

undefined variable in the input stream, control branches to
ERRORXIT. The branch to RETURN causes GDIP to read and process
the next input card.

6-117

5. The statement:

END

terminates the definition routine code

6.2.52.5 PDL - See Appendix A.

6.2.52.6 Decision Tables and Algorithms - None.

6-118

6.2.53 SMLTIM

6.2.53.1 Identification

o SMLTIM - Launch Time Delay Due to Schedule

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.53.2 Argument Dictionary - None.

6.2.53.3 Local Variable Dictionary

I — ——
|
VAkI MbLE

j
D I M

|
TYPE

j
DE i>CR I P T 1 U N

u2 - 1*4 BOARDING DELAY DUE TO WAITING FOR THE
SCHEDULED DEPARTURE TIME.6.2.53.4

Description - The purpose of SMLTIM is to determine the time

delay that the vehicle should wait until the scheduled departure time.

In the case of scheduled service, a test is made to see if fixed departure
times are used or the vehicles are to depart midway between the previous
vehicle on the route and the following vehicle. In the case of fixed
departure times, the time the current vehicle on the route is to leave is

determined by adding the time the last vehicle on the route was scheduled
to leave and the route headway. If this time has already passed, then
the delay associated with waiting until scheduled departure time is set
to zero. If the time has not already passed, then this delay is set to

the difference between the current clock and the desired time.

In the case of scheduling departures midway between the time the
previous vehicle on the route and the following vehicle, the time the
current vehicle on the route is to leave is determined by computing the
average of the time the next should leave and the time the last did leave.

If this time has already passed, the delay is set to zero. Otherwise,
it is set to the difference of the computed time and the current value
of the clock. Next the time the last did leave is set to the sum of the
value of the clock and the delay. Then the time the next should leave is

computed by increasing its previous value by the route headway.

6-119

6 . 2 . 53.5

6 . 2 . 53.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-120

6.2.54 SMNXST

6.2.54.1 Identification

o SMNXST - Vehicle Next Stop Determination

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.54.2 Argument Dictionary - None.

6.2.54.3 Local Variable Dictionary - None.

6.2.54.4 Descripti on - The purpose of SMNXST is to determine the next
station at which occupied vehicles will stop and turn empty vehicles over
to empty vehicle management for the store-leave decision. For demand
responsive service, a test is first made to determine if the onboard trip
queue is empty. If it is empty, empty vehicle management (SMEVM) is run.

Otherwise, the vehicle is marked so as not to divert into storage and
the next stop is to be the destination of the first trip on the vehicle.
In the case of scheduled service, next stop is not required since it is

not used to support entrainment.
6.2.54.5

PPL - See Appendix A.

6.2.54.6

Decision Tables and Algorithms - None.

6-121

6.2.55 SMRNG

6.2.55.1 Identification

o SMRNG - Generate Uniformly Distributed Random Numbers

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.55.2 Argument Dictionary

i

| VARIABLE
|
DIM

i
TYPE

|
DESCRIPTION

I

MRSEED — 1*4 RANDOM NUMbER SE E

D

MRAN DN - R *4 RANDOM NUMBER BETWEEN 0 AND 1

6.2.55.3 Local Variable Dictionary - None.

6.2.55.4 Description - This routine is used to generate a random number
that is uniformly distributed between 0 and 1.

6.2.55.5 PDL - See Appendix A.

6.2.55.6 Decison Tables and Algorithms - None.

6-122

6.2.56 SMRSEL

6.2.56.1 Identification

o SMRSEL - Randomly Select Point from Cumulative Distribution

o IBM/FSD July 1, 1977

o PARAFOR

6.2.56.2 Argument Dictionary

i i

VAR I A6lE | DIM
|
TYPE

l
DE SCRIPT ION

DC 1 ST K DEND R*4 ARRAY CONTAINING A CUM. PRQ3 . DIST.
DSTRT —

I *2 STARTING ENTRY IN DD1STR ARRAY
DEND —

I *2 ENDING ENTRY IN DD1STR ARRAY
DKSEED — 1 *4 (INPUT AND OUTPUT) RANDOM NUMBER SEED 0-3)
DSL^CT — I *2 (OUTPUT) PROBABILITY ENTRY SELECTED

6.2.56.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

DRANDN - R*4 Random number returned by SMRNG
6.2.56.4

Description - This routine is used to randomly select a point
from a cumulative distribution. It does this by using SMRNG to generate
a random number between 0 and 1 and then searching the cumulative distribution
until a point on it larger than the random number is found. The index
of that point is returned.

6.2.56.5 PPL - See Appendix A.

6.2.56.6 Decision Tables and Algorithms - None.

6-123

6.2.57 SMTABQ

6.2.57.1 Identi f icati on

o SMTABQ - Prepare a Trip for Boarding

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.57.2 Argument Dictionary

i

| variable
|
dim

|
type

|
description

1*4 TRIP JUST F I N 1 SHED WITH ALL TRIP LINKS OK
JUST TRANSFERRED OFF A VEHICLE,6.2.57.3

Local Variable Dictionary

| VARIABLE
t DIM I

TYPE
i
DESCRIPTION

T — I *4 TRIP BEING PROCESSED
TR —

1 *4 TRIP BEING PROCESSED
T 1 M —

I *4 DELAY UNTIL EMPTY vEHICL
V — I *4 LEAD VEHICLE BEING PROCE
V ID — I *4 VEHICLE BEING PROCESSED
VbCrOR 1*4 LEAD VEHICLE PREDECESSOR

BOARD EVENT
LEAl. V —

1 *4 LEAD VEHICLE OF A TRAIN
VEH — I *4 VEHICLE IN TRAIN IN THE
VEHHEr I *4 PREDECESSOR OF VEHICLE I

EVENT
oheadz - I *4 TAIL TO TRAIN CHAIN
ST P TR I *4 POINTER TO A STATION IN

ROUTE LIST
K —

1 *2 SUBSCRIPT TO THE EMPTY V

T I UN
ONE - 1 *2 1NTEGEk*2 VERSION OF THE
T AO - 1 *2 INTEGER* 2 VERSION OF T HE
F UUND L * 1 INDICATES VEHICLE CAN SE

processed:

TRAIN IN TME 3 0ARD

IN THE VEHICLE'S STATION

TY VEHICLE DELAY D1STR1BU

ON S T AN 1 1

ON STAN T 2

ICE THE TR IP 8 E I NG

T=-->FOUND
F—— — >NUNE i-OUND

6-124

MATCH - L? 1 INDICATES WHETHER UR NOT THE VEH D TRIP AR

COMP AT I BLE

:

1 =.==>MATCH
L’ = -=>NU MATCH

CHEEK — t_*l INDICATOR THAT VEHICLE HAS BEEN FOUND THAT
HAS iPACE FOR THE TRIP:

T = FOUND
F - NOT FOUND

6.2.57.4 Description - The purpose of SMTABQ is to get a vehicle moving
to pick up a trip when the trip arrives at the boarding queue. Under

certain circumstances a trip can immediately board a waiting vehicle. In

the case of scheduled service, the arrival of a trip at the boarding queue

causes it to actively seek out a vehicle which is undergoing boarding and

is on the appropriate route and has space available. (See SMBRD for

methodology.) In the case of demand responsive service, the user has

the option of specifying any subset and any ordering of up to three
places to "look" for an empty vehicle to service the trip. These three

places are:

1. From local storage

2. From eligible user-specified station links upstream of the

dock

3. From elsewhere in the network (always successful since it

generates an empty vehicle).

In the case of trying to get a vehicle from local storage, all the
vehicles on the link representing storage are searched until one is

found that is still in the stored state. (There could be vehicles on

the storage ramp that are queued waiting to depart but cannot due to

congestion.) When a vehicle is found, if it is at the head of the
storage link (i.e., no other vehicles in front of it), its queuing
reason is set to indicate that it is done with processing on the link it

is on and queued due to congestion and then SSPMAC is used to schedule a

prompt on that link to get the vehicle moving. If it is not at the head
of the storage link, its queuing reason is set to indicate that it is

done with processing on the link it is on and waiting for the vehicle in

front of it to leave before proceeding. If a vehicle is found this way,

success is signalled and SMTABQ exited.

In the case of trying to get a vehicle from the station links
upstream on the dock, SMTABQ searches all vehicles on the trains on all

requested links until it finds an unreserved empty vehicle. When it

finds one it marks it as reserved and signals success.

6-125

In the case where either or both of the above requested options
fail or when the user specifies this methodology, SMTABQ will simulate
the fetching of an empty vehicle from elsewhere in the network by generating
an empty vehicle arriving on the guideway upstream of the station. It

does this by getting an available transaction from the available list,

initializing it to the characteristics of an empty vehicle, determining
the delay until it appears upstream of the station from a user specified
distribution of delay and a random number, and schedules the vehicle to~

arrive upstream of the station at that selected delay time in the future.

6.2.57.5 PPL - See Appendix A.

6.2.57.6 Decision Tables and Algorithms - None.

6-126

6.2.58 SSASAV

6.2.58.1
Identification

o SSASAV - Initialize System Status Area Words

o IBM/FSD - July 1, 1977

o ASM

6.2.58.2 Argument Dictionary - None.

6.2.58.3 Local Variable Dictionary - None.
6.2.58.4

Descripti on - The purpose of SSASAV is to initialize system
status area words. It serves at linkage edit time to capture the

address of the start of the input common area, start of model common
area, and end of common areas. See discussion of SANTSA.6.2.58.5

PPL - See Appendix A.
6.2.58.6

Decision Tables and Algorithms - None.

6-127

6.2.59 SSLEAV

6.2.59.1 Identi fi cation

o SSLEAV - Process a Vehicle/Train Leaving a Station Link

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.59.2 Argument Dictionary

V AR I A bLE |
DIM

|
T Y PE |

DESCRIPTION

V - 1 *4 VEHICLE UR LEAD VEHICLE CF A TRAIN WHICH IS
leaving the station link

6.2.59.3 Local Variable Dictionary

VAK I ABLE | DIM
1

TYP E
|
description

NEX 1 V - I *4 VEHICLE BEHIND V IN
SH] P list

THE STATION LINK MEMBER-

S L 1 *2 V'S CURRENT station LINK
6.2.59.4

Description - SSLEAV performs processing associated with a

vehicle leaving a station link. When it has been guaranteed that the next

link can be entered, SSLEAV decreases the link occupancy (and pseudo-occupancy
if necessary) of the current link by the length of the train and degueues
the train from the link's membership list thereby facilitating the departure
of the vehicle/train.

SSLEAV next tries to get the following vehicle moving if it had been
queued. If it has completed events on the link, it is prompted; if it is

waiting to start its launch event, it is modeled.

Finally, SSLEAV tries to get vehicles on upstream links moving since
the leaving vehicle might have made sufficient space available to accommodate
them.

6.2.59.5

PDL - See Appendix A.

6.2.59.6

Decision Tables and Algorithms - None.

6-128

6.2.60 SSMOD

6.2.60.1
Identification

o SSMOD - Model the Vehicle/Train on its Current Station Link

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.60.2

Argument Dictionary

|
VARIABLE

|
DIM

|
TYPE

|
DESCRIPTION

V — 1+4 VL hi CLE TO 3E MODELED ON THE STATION LINK.

6.2.60.3 Local Variable Dictionary - None.

6.2.60.4 Description - The purpose of SSMOD is to direct the use of

three other code segments: SSMODA, SSMODN, and SSMODB, thereby controlling
the transitional processing from one station link event to another. SSMOD
is a code segment whose function is to direct the use of three other code
segments:

1. SSMODA -- Perform processing associated with a vehicle's
station link event immediately after that vehicles comes off
the FEL for that event.

2. SSMODN -- Perform processing to determine the next event to

occur_to the vehicle.

3. SSMODB -- Perform processing associated with the vehicle's
next station link event and put the vehicle on the FEL for
that event.

These three code segments are commonly called in the order after-next-before.
This structure gives the simulator the flexibility to represent any station
link that can be derived from the canonical station link. However, in the
case when the vehicle is entering the link for the first time, SSMODA is

skipped. Also, in the case where the vehicle has completed all events on

the current link, SSMODB is skipped. SSMODA is also skipped when a vehicle
has been waiting to start the launch event but is unable to, and so control
has been transferred back to SAMAIN with the vehicle left in a queued state.

In this case, the after-time-segment processing that SSMODA does has

6-129

already been performed and should not be performed again. Additionally,
SSMODB is also skipped when SSMODN had to queue the vehicle awaiting launch
due to another vehicle being in front of it.

6 . 2 . 60.5

6 . 2 . 60.6

PPL - See Appendix A.

Decision Tables and Algori thms - None

6-130

6.2.61 SSMODA

6.2.61.1 Identi fi cation

o SSMODA - Vehicle Processing After a Station Link Event

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.61.2 Argument Dictionary

VAK I ABLc
|
DIM

|
T YPE

|
DESCRIPTION

V '
I ¥4 INDIVIDUAL VEHICLE OR LEAD VEHICLE OF THE

TRAIN

6.2.61.3 Local Variable Dictionary

VAi- I ABLE Q
l

type
|
DESCRIPTION

V ID — I ¥4 VEHICLE BEING PROCESSED IN THE TRAIN
Tixl P —

I *4 TRIP BEING PROCESSED
D 1 1 ,-.E I ¥4 DELTA TIME BETWEEN TIME THE TRIP LAST CAME

OFF THE FEL AND THE CURRENT TIME
T1D —

I ¥4 TRIP BEING PROCESSED
V L H —

1 *4 LEAD VEHICLE IN THE TRAIN
QhE ADV —

1 ¥4 TAIL TO THE TRAIN CHAIN
VctrOR —

I ¥4 PREDECESSOR VEHICLE IN THE TRAIN
SL — I ¥2 VEHICLE'S CURRENT STATION LINK
C ME C K — L* 1 NOT USED

6.2.61.4 Description - The purpose of SSMODA is to do processing
after the time segment that the vehicle has just spent on the FEL.

After the headway zone travel event, the headway zone flag is turned
off so as to indicate to other vehicles that the link can now be

entered. Then in order to insure that any vehicle that was waiting
to enter but could not because the headway zone was occupied, SSPMAC
is run to schedule a prompt to get vehicles moving on upstream station
1 i nks.

6-131

After the main travel event, no processing is necessary.

After the deboard event, the following processing is done for each
vehicle in the train. First, for every trip that is to deboard and
leave the system (as determined by SMBRD when SSMODB was run), the trip
is dequeued from the deboard and leave list, trip statistics are col-
lected, and the trip is scheduled for the deboard exit walk time.

Second, for each trip that is to deboard and transfer (as determined by

SMBRD when SSMODB was run), the trip is dequeued from the deboard and
transfer list, statistics are collected and it is scheduled for the

transfer exi t wal k.

After the board event, the following processing is done for each
vehicle in the train. For each trip that is to board that vehicle (as

determined by SMBRD when SSMODB was run), the trip is dequeued from the
board list, enqueued onto the onboard trip queue and the occupancy of
the boarding queue is decreased by the size of the trip. The SMNXST is

run to determine the next stop of the vehicle. Then SUPMAC is run to
schedule prompt to insure that any trip that has been waiting in the
turnstile area to enter the boarding link but could not (since the
boarding link was at capacity) does not enter since some trips have left
the boarding queue.

After the joint event the processing done after the deboard and
board events is done.

After the store event, no processing is necessary.

After,the launch event, SMENTR is run when the entrainment policy
is in effect in order to attach other waiting vehicles to the launched
one.

6.2.61.5 PPL - See Appendix A.

6.2.61.6 Decision Tables and Algorithms - None.

6-132

6.2.62 SSMODB

6.2.62.1
Identification

o SSMODB - Vehicle Processing Before a Station Link Event

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.62.2

Argument Dictionary

(variable
|
DIM

v

TYPE
|
DESCRIPTION

|

(

1*4 INDIVIDUAL VEHICLE OR LEAD VEHICLE OE THE
TRAIN WHuSE NEXT EVENT HAS 3EEN DETERMINED
AND 1SHO NEEDS "BEFORE” PROCESSING DONE r OR
that event*6.2.62.3

Local Variable Dictionary

vAR I AO i_E 1 dim i
T Y^E

B 1
— 1 *4

B2 -
I 4-4

33 - I *4

D 1
—

1 44

DdOMAX — I 44
VE H -

1 44
V ID — I 44
N,vT —

I 44
DB T O TP KMTLLN 1 42
ORT T I V. - I 44
T IM — I 44
T 1 —

I 44

T 2 —
1 44

th w ay - 1 44
TLM AX —

1 44

de SCRI PT ION

BOARDING DELAY BASED ON NUMBER OF TRIPS
BOARDING
BOARDING DELAY BASED ON THE SCHEDULED DEPARTURE
T 1 ME
BOARDING DELAY BASED ON THE FORWARD vEhICLE»S
BOARDING DURATION
DE30ARDING DELAY BASED ON NUMBER OF TRIPS
bE BOARD I NG
MAXIMUM DE BOAR l*/BOARD TIME
LEAD VEHICLE IN THE TRAIN
VEHICLE BEING PROCESSED
NOT USED
NUMBER OF PASSENGERS DEBOARDING THE VEHICLE
OUTPUT RAMP TRAVEL TIME
THE TIME THE VEHICLE WILL SPEND ON THE FEL
DELAY DUE TO M OR GE S IN ThE REST OF THE
NETWORK
DELAY DUE TO LOCAL MERGES
HEADWAY TRAVEL T 1 ML
HEADWAY TIME REQUIRED ON THE BYPASS LINK FOR
THE LONGEST POSSIBLE TRAIN

6-133

f MAX

T.v.E AM
T

V BErOR

ONE
TWO
K

SL
c HE t_K

1*4 | I ME A VEHICLE WILl. SPEND UN THE FtL FUR THE
bOARD/DEBOARU/ JO 1 NT EVENT

R*4 MEAN TIME UF A NORMA L DISTRIBUTION
R * 4 REAL VARIABLE CONTAINING THE DF.9 0ARD/Q0A RD/

JOINT EVENT TIME
I *4 INDICATOR WITH A VALUE OF 1 WHEN THE CURRENT

STATION LINK HAS A HEADWAY EVENT
AND A VALUE UF 0 WHEN IT HAS NONE.
US tD TO MAKE TRAVEL TIME A FUNCTION UF HEADWAY
T I ME •

I *4 PfttDECESSOK VEHICLE ON THE STATION LINK
MEMBERSHIP LIST.

1*2 INTEGEK*2 VERSION OF THE CONSTANT 1

1*2 INTEGER*^ VERSION OF THE CONSTANT 2

1*2 SUBSCRIPT TO THE LOCAL MERGE DELAY DISTRIBUTION
I *2 VEHICLE'S CURRENT STATION LINK
L* 1 TRUE INDICATES THAT THE SEARCH OF VEHICLES ON

THE STATION LINK MEMBERSHIP LIST HAS HIT THE
VEHICLE GOlNb ON THE FEL FOR THE BOARD OR
JOINT EVENT.

6.2.62.4 Description - The purpose of SSMODB is to perform processing
that is to be done before the time segment for which the vehicle is

about to be put on the FEL. With the exception of the store event it

also determines the amount of time that a vehicle is to spend on the

FEL, and then actually puts the vehicle transaction on the FEL.

SSMODB consists of the processing to be performed for each of the

seven events that can occur on a station link before a vehicle goes on

the FEL for any one of those events.

In the case of traveling the headway zone, the headway zone flag
is turned on to indicate to the other vehicles that this link cannot
be entered until the flag is turned off. The headway zone travel time
is then calculated from the form ax+b, where x is the number of vehicles
in the train that the vehicle being processed is leading and a and b are
user specified times. The vehicle being processed is then put on the
FEL to remain there for that amount of time.

In the case of travel i ng the main body of a link, the travel time
is computed as the difference between the user-supplied station link
travel time and the headway zone travel time. Furthermore, this difference
is multiplied by a user-supplied penalty factor used to degrade the link
and then the resulting time is the time which the vehicle will spend on

the FEL for the travel event. In addition to travel time, empty slots

6-134

on the bypass link must be updated whenever the vehicle is traveling on

the bypass link and the local merge policy is in effect. The head of

the train beginning travel delimits the end of the open slot in front of

that train and the end of the train delimits the start of the slot

behind the train. Hence, the table of empty slots on the bypass link,

used before launch by vehicle's attempting local merge, is updated to

reflect the presence of a new vehicle traveling the bypass link.

In the case of deboardi ng ,
SMDETR is run when the entrainment/

detrainment policy is in effect and the vehicle beginning the deboarding
event is actually the lead vehicle of the train. Once that is done, the

following processing is done for each vehicle before it is separately
scheduled^to spend time on the FEL.

SMDBRD is run to determine the total number of passengers that will

be deboarding the vehicle at the station. This count is multiplied by

the standard deboarding time per passenger and then added to a deboarding
time constant. The resultant "mean" deboarding time for the vehicle is

then randomized using a user-specified standard deviation and the result
is the time that the vehicle will spend deboarding.

When the deboarding time for a train is required, the above procedure
is followed for each vehicle in the train and the time required for the

train is the maximum of the times required for each vehicle in the
train. The lead vehicle of the train is then scheduled to spend that
maximum time in the FEL.

In the case of boarding
,
SMBRD is run to determine the number of

trips that will be boarding either an individual vehicle, or each vehicle
in a train. Once the counts are made, borading time is computed for
each vehicle individually. The count for a vehicle is multiplied by the
standard boarding time per passenger and then added to a boarding time
constant. The resultant "mean" boarding time for the vehicle is then
randomized using- a user-specified standard deviation and the result is

the time that the vehicle will spend boarding trips. When the boarding
time for a train is required, the maximum of the times for each vehicle
in the train is used.

When the service policy is demand responsive, the vehicle is ready
to be scheduled to spend the above boarding time on the FEL. When the
service policy is scheduled, it is possible that the vehicle will spend
more time in the boarding event than that computed for boarding. Such
is the case when SMLTIM is run and the schedule delay is found to be
greater than the boarding time. The greatet^of the two times is chosen.
In addition, when the vehicle/train is behind' another vehicle/train
which is in the board event, the following vehicle's time in boarding
will extend at least as long as that of the preceding one so that trips

6-135

can continue to board it while it is held up by the vehicle/train in

front of it. Hence, in scheduled service, the maximum of the following
three times is the time for which the vehicle/ train is scheduled to

spend time on the FEL for the board event: passenger boarding time,

schedule delay, and delay due to the preceeding vehicle held up in

boardi ng.

In the case of the joi nt event, a combination of processing done
for the deboard event and the board event is done. As in deboard pro-
cessing, trains are detrained (using SMDETR) when necessary and the
number of passengers getting off each vehicle is determined (using
SMDETD). As in board processing, the number of passengers getting on

each vehicle is determined (using SMDBRD). The calculations to determine
the time to spend in the joint event do, however, differ. First the
deboard and board times are computed separately using equations that
contain interaction terms. The deboard time equals a + b + c + d where
a equals the deboard time per passenger times the number of passengers
deboarding; b equals an interaction constant times the product of trips
boarding and trips deboarding; c equals a constant times the number of
trips boarding; and d equals a deboarding constant. The board time
equation is of the same form, however the coefficients for each term are
user-specified specifically for the boarding case. The two "mean"
times, thus found, are then randomized using separate user-specified
standard deviations. The resultant times are then compared. If the
randomized deboard time is greater than the randomized board time plus
the waiting delay (for deboard to get a 'head-start'), then the deboard
time becomes the joint time. Otherwise, the board time plus that delay
is the joint time.

When the joint time for a train is required, the above procedure is

followed for each vehicle in the train and the time required for the
train is the maximum of the times required for each vehicle in the
train.

As in the case in the board event, when the service policy is

demand responsive, the vehicle is ready to be scheduled to spend the
joint event time on the FEL. However, when the service policy is sche-
duled, it is possible that the vehicle will spend more time in the joint
event than that already computed. Hence, in joint scheduled service as

in the board scheduled service processing, the maximum of the following
three times is the time for which the vehicle/train is scheduled to

spend time on the FEL for the joint event: joint time, schedule delay,
and delay due to the preceedincuvehicle being held up in the joint
event.

For the deboard, board and joint events, if a trip and vehicle
event file has been requested a record is written for each trip deboarding
to leave, deboarding to transfer, and boarding.

In the case of a store event, the vehicle is simply marked as

queued for storage and not put on the FEL because it is not known when
i t will be unstored.

6-136

In the case of the 1 aunch event, the delay time due to merges in

the rest of the network is selected randomly from the user-specified
network merge delay distribution. This is the only launch delay when
the local merge policy is not in effect. However, when local merging is

done, an attempt is also made to find a slot on the bypass link to

accommodate the vehicle. When a slot cannot be found, retry is attempted
after a suitable time delay which includes the delay due to merges in

the rest of the network. The second and subsequent times local merging
is attempted, delays due to merges in the rest of the network are not

considered.

Under two circumstances local merge delay is retried: when the

bypass link has no slots, and when a vehicle is queued at the end of

the bypass link. When the bypass link has no slots, the vehicle awaiting
launch is required to wait a minimum delay time of t until a gap, if

created now, were to reach a point on the bypass link such that a vehicle
starting to travel the output ramp t time later would be able to fit

into that slot. When a vehicle is queued at the end of the bypass link,
launch is retried a nominal time t later where t equals the difference
between the time to travel the bypass link and that required to travel
the output ramp.

Local merge delay is found when a table of slots on the bypass link
has been checked and a slot that can accommodate the vehicle is found
far enough from the end of the bypass link such that a vehicle could
have time to travel the output ramp before merging with the slot. The
table of slots on the bypass link must be updated to reflect the loss of
a slot when one has been used. To be considered eligible, all slots
must be greater than or equal to the maximum headway required on the
bypass link. Hence, any length train can be merged into an eligible
slot.

6.2.62.5 PDL -_See Appendix A.

6.2.62.6 Decision Tables and Algorithms - None.

6-137

6.2.63 SSMODN

6.2.63.1 Identi fication

o SSMODN - Vehicle Next Station Link Event

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.63.2 Argument Dictionary

V Arv I ABLE
|

D I ;V|
1|

TYPE
|
DESCRIPTION

V ~ 1*4 VEHICLE OR LcAD VEHICLE
NEXT STATION LINK EVENT

OF
I S

A TRAIN* WHOSE
TO BE DETERMINED

6.2.63.3 Local Variable Dictionary

V A K I ABLE
|
DIM

||

T YPE
j
DESCRIPTION

SL -
I * 2 VEHICLt'S current station link

vV A S xJ O — 1*2 REASON The VEHICLE WAS FORMERLY DUELED
N XE VP I *2 POINTER TO THE NEXT EVENT IN THE SL EVENT

LI ST
cV'FNl; — L * 1 USED TO INDICATE :

F===>SK1P OVER DEBOARD AND BOARD EVENTS IN
the case of an on-line station where
THE VEHICLE IS NOT TO SIOP

T = -=>DO NOT SKIP OVER DEBOARD E BOARD EVENTS

6.2.63.4 Description - The purpose of SSMODN is to determine the next
event to occur in the vehicle being processed. In the case where the
link is being entered for the first time, the occupancy of the link is

increased by the length of the train and the vehicle is engueued onto
the station link's membership list. When the link is one that contains
deboard, board, or joint events (i.e., where the vehicle must be stationary
and thus effectively blocks berths downstream of it when they become
empty), a pseudo-occupancy is also maintained by increasing it by the
train length. This pseudo-occupancy will be maintained egual to the
capacity minus the number of available (upstream) berths.

6-138

In most cases the next event for the vehicle/train is the next
event listed on the station link's event list. Such is the case with
headway travel, main travel, and store, where no special processing is

requi red.

In the cases of deboard and board events, a test is made to see if

this is on online station and if the vehicle is not to stop here thus
allowing these two events to be skipped when possible.

In the case of the launch events, a test is made to insure that the
vehicle that is about to attempt launch is the head vehicle on the link
(i.e., no other vehicles in front of it). If there are other vehicles
in front of it, then the vehicle is marked as queued for that reason and
control passes out of SSMODN.

When there are not more events to be processed on the link, a test
is made to see if the vehicle had been waiting for launch or if it is

back to retry launch. (Recall that the launch event is the last event
on the canonical station link.) In this case, the next event is the

launch event. Otherwise the vehicle is done with the station link.

6.2.63.5 PPL - See Appendix A.

6.2.63.6 Decision Tables and Algorithms - None.

6-139

6.2.64 SSPMAC

6.2.64.1 Identification

o SSPMAC - Station Link Prel ini nary Prompt Test Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.64.2 Argument Dictionary

| VAklABLE
|
DIM

|
TYPE

|
DESCRIPTION

|

I I

SL - C IDENTIFIER OF THE STATION LINK. BEING PROMPTED.
FLAG - C CHARACTER STRING TO INDICATE THAT

THE SL ITSELF SHOULD BE PROMPTED.
(optional; default = null, vehicles un each
LINK' IMMEDIATELY UPSTREAM OF AL- SHOULD 3t
PkOMPTED)

6.2.64.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code

M - C Hold margin pointer

X - C 'X
1 character string

LOCI — C Indicates gueued vehicle has

found

L0C2 - C Link number being searched

L0C3 “ C Number of system service XTN

gotten for PROMPT

6.2.64.4 Description - The purpose of SSPMAC is to schedule a special

purpose transaction zero time in the future which, when it comes off the

FEL, will run SASPRM. SSPMAC is run at various points in the other

station link code segments to schedule a special purpose transaction

zero time in the future which, when it comes off the FEL, will run

SASPRM. This mechanism of schedul i ng a prompt to occur immediately

rather than immediately calling SASPRM at that point in the code is done

since SASPRM calls SSLEAV which would call SASPRM and so on.

6-140

SSPMAC first does some preliminary prompt testing to see if it is

necessary to schedule a prompt at all. Next it gets a free transaction
and initializes it to call SASPRM when it comes off the FEL. It then
schedules it on the FEL zero time in the future.

6.2.64.5 PDL - See Appendix A.

6.2.64.6 Decision Tables and Algorithms - None.

6-141

6.2.65 SSTEST

6.2.65.1 Identification

o SSTEST - Station Link Entry Testing and Next Link Determination

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.65.2 Argument Dictionary

|
VArU^ELt-;

I
DIM

I
TYPE

|
LtsCklPTlON

V -1*4 VEHICLE OR LEAL/ VEHICLE OF A TRAIN WHICH Is
DONE WITH ITS station LINK EVENTS AND READY

|

TO PROCEED TO ITS NEXT STATION LINK

6.2.65.3 Local Vari able Di cti onary

VAR I A5lE j DIM |
TYPE

|
DESCRIPTION

vlen — I ^ 4 VEHICLE'S TRAIN LENGTH
SL -

I *2 VEHICLE'S CURRENT STATION LINK
DJNE — L*1 NOT USED
F CjU F' U — L * 1 NOT used

6.2.65.4 Description - The purpose of SSTEST is to determine the next
station link to be entered and if it can be entered. Station link entry
testing is comprised of a series of its next station link.

The first test insures that the vehicle in question is at the head
of the link it is on (i.e., there are no other vehicles in front of it).

If there are other vehicles in front of it, the vehicle is marked as

done with all events on its current link and queued. If this test is

passed, then a test is made to determine if the exit of the vehicle's
current link is failed or not. If that exit is failed, the vehicle is

marked as queued due to the congestion/failure.

Once the tests are passed on the current link, downstream links are

examined. If there is no diverge at the end of the current link, then a

6-142

test is made to determine if the next link is a sink (i.e., there are no

more station links). In this case, the next station link to be entered
is noted to be a sink and the "can enter" indicator is set. If the next
link is not a sink and there is no diverge, a list of possible links to

enter is initialized to the single downstream link. In the case where
there is a diverge downstream of the current link, SMDIVF is run to

narrow down the list of possible downstream links and also to order that
shortened list in an order of preference. This reduced and ordered list

is used by SSTEST.

Once the list is built, the following tests are made for each link

on the list until an adequate link is found or the list is exhausted.

First a test is made to insure that the link is available (i.e., has not

been "turned off" by the user for this simulation run) and that the link
entry is not failed. If these tests are passed, a test is made to see

if the headway zone of the link in question is occupied and if the

capacity of the link would be violated by allowing the train of the

vehicle being processed to enter. The capacity check uses occupancy or

pseudo-occupancy as appropriate (and as explained in SSMODN).

SSTEST signals "can enter" or "cannot enter" as appropriate. When
the vehicle cannot enter the reason it is queued is set. When it can
enter, the next station link is set. Miscellaneous statistics are also
col 1 ected.

6.2.65.5 PPL - See Appendix A.

6.2.65.6 Decision Tables and Algorithms - None.

6-143

6.2.66 SULEAV

6.2.66.1 Identi fi cation

o SULEAV - Processing a Trip Leaving a Trip Link

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.66.2 Argument Dictionary - None.

6.2.66.3 Local Variable Dictionary

VARIABLE
|
DIM

|
T YPc

|
utSCRlPTiON

,\EXTT - 1*4 TRIP BEHIND ! ON THE TRIP LINK. MEMBERSHIP
LI ST

'

Tl - 1*2 1 *S CURRENT TRIP LINK6.2.66.4

Description - SULEAV performs processing associated with a
trip leaving a trip link. When it has been guaranteed that the next
link can be entered, SULEAV decreases the occupancy of the trip link
by the size of the trip and dequeues it from the- link's membership
list. The waiting trip behind the leaving trip is gotten moving again
by being modeled. The upstream links are prompted so trips on it may
also have the opportunity to get moving again.

6.2.66.5

PPL - See Appendix A.

6.2.66.6 Decision Tables and Algorithms - None.

6-144

6.2.67 SUMOD

6.2.67.1 Identification

o SUMOD - Model a Trip on its Current Trip Link

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.67.2 Argument Dictionary

l

| VARIABLE
| DIM

I
TYPE

j DESCRIPTION
I

T I?4 TRIP TO BE MODELtD ON ITS TRIP LINK
I

6.2.67.3

Local Variable Dictionary

i VARIABLE |
DIM

|
TYPE

|
DESCRIPTION I

TIM - 1*4 TIME TO PERFORM THfc PROCESSING EVENT
TL - 1*2 l*S CURRENT TRIP LINK6.2.67.4

Description - SUMOD performs processing associated with each
of the events a trip can undergo on a trip link. When SUMOD is entered
for the first time by a trip transaction, the occupancy of the link is

increased by the size of the trip, the trip is enqueued in the membership
list of the link- (to record the order of entry), the next event number
is set to 1, the walk time on the link is used when scheduling the trip
on the FEL.

After the walk event on the ticketing or turnstile link, a test is

made to see if the trip is at the head of its trip link (i.e., there are

no other trips in front of it). An indicator associated with the trip
is set to indicate that it cannot proceed with its next event (namely
processing through ticketing/turnstile mechanisms). When the trip is at

the head of its trip link, the processing time through the ticketing/turnstile
mechanism is computed from the form ax/y+b, where x is the number of

passengers in the trip, y is the number of active servers (mechanisms),
and a and b are user specified times. The next event number of the trip

is then set and the trip is put on the FEL for the amount of computed
time. After the walk event on the boarding link (i.e., there is no

6-145

processing event to be performed), :, done M
is signalled immediately. For

ticketing and turnstile links done is signalled after processing through
the ticketing/turnstile mechanisms.

If SUMOD is entered with an event code indicating a deboard exit
walk has been completed, final statistics are collected on the trip and
its transaction is freed. If a transfer walk was completed, statistics
on collected and SMTABQ is called.

6.2.67.5 PPL - See Appendix A.

6.2.67.6 Decision Tables and Algorithms - None.

6-146

6.2.68 SUPMAC

6.2.68.1 Identi f i cation

o SUPMAC - Trip Link Preliminary Prompt Test Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.68.2 Argument Dictionary

V AK I AHLc
|
DIM

|1

Type
.

|

|
DESCRIPTION

1 L — C IDENTIFIER OF Thh TRIP LINK trEING PROMPTED.

6.2.68.3 Local Variable Di cti onary

VARIABLE DIM TYPE DESCRIPTION

OUT -
C Constructed FORTRAN code

M - C Hold margin pointer
X “

C 'X' character string
LOCI C Number of system service XTN

gotten for PROMPT

6.2.68.4 Description - The purpose of SUPMAC is to schedule a special
purpose transaction zero time in the future which, when it comes off the
FEL, will run SAUPRM. SUPMAC is run at various points in the other trip
link code segments to schedule a special purpose transaction zero time
in the future, which, when it comes off the FEL, will run SAUPRM. This
mechanism of schedul i ng a prompt to occur immediately rather than immediately
calling SAUPRM at that point in the code is done since SAUPRM calls
SULEAV which would call SAUPRM and so on.

SUPMAC first does some preliminary prompt testing to see if it is

necessary to schedule a prompt at all. Next it gets a free transaction
and initializes it to call SAUPRM when it comes off the FEL. It then
schedules it on the FEL zero time in the future.

6.2.68.5 PDL - See Appendix A.

6.2.68.6 Decision Tables and Algorithms - None.

6-147

6.2.69 SUTEST

6.2.69.1 Identification

o SUTEST - Trip Link Entry Testing

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.69.2 Argument Dictionary - None.

6.2.69.3 Local Variable Dictionary

i

| VARIABLE I
DIM

I
7YPZ

|
DESCRIPTION

I

NATL - 1*2 T*S NEXT TRIP LINK6.2.69.4

Description - SUTEST is used to determine the next trip link

to be entered and if it can be entered once the trip is on a trip link.

In the case where the trip's current trip link is the ticketing link or

turnstile link, a test is made to determine if the capacity limit of the

next link would be violated by its entry. If so the trip is marked as

queued and cannot enter. Otherwise the next link is set to the turnstile
link or boarding link respectively so that the trip can enter.

In the case when the current link is the boarding link, the next
link is set to four to indicate to SAUCTL that link processing is finished
and the trip is -ready to board.

6.2.69.5

PDL - See Appendix A.

6.2.69.6

Decision Tables and Algorithms - None.

6-148

6.2.70 SZHDR

6.2.70.1 Identi fi cation

o SZHDR - Write Raw Statistics Header Record

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.70.2 Argument Dictionary

| VARIABLE
1
DIM

I
TYPE

|
DESCRIPTION

NFOLL - I *4 NUMBER OF FOLLOWER RECORDS
N TYPE - 1*4 TYPE OF FOLLOWER RECORDS

6.2.70.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

HEADER - R*8 Keyboard 'HEADER' to write in

records
MBYTES - 1*2 Number of bytes in header
MF0LL - 1*2 Number of followers
MTYPE - 1*2 Type of followers

6.2.70.4

Description - The purpose of SZHDR is to write a header
record on the raw statistics file that indicates the number and type
of follower records to follow.

This routine formats and writes a header record that contains the
word 'HEADER 1

,
its own length, the clock time, and number and type of

follower records.

6.2.70.5 PDL - See Appendix A.

6.2.70.6 Decision Tables and Algorithms - None.

6-149

6.2.71 SZINT

6.2.71.1 Identification

o SZINT - Calculate Integral Averages and Miscellaneous
Stati sti cs

o IBM/FSD ~ July 1, 1977

o PARAFOR

6.2.71.2 Argument Dictionary - None.

6.2.71.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

NBY - 1*2 Number of bytes
COUNT 72 R*4 Count of SLS of each type
AINT - 1*4 Length of last sample period
K 1*4 Number of clock units per

second
KNTL - 1*4 Number of trip links
6.2.71.4

Description - SZINT calculates endpoint integrals and

calculates averages and miscellaneous statistics. It begins by

endpointing integrals. This is done by adding to the integral the

product of the clock and count of number of entities currently in

state/ Then the average number in state is calculated by dividing the

time integral in- state by the length of the interval. The average
time in state is calculated by dividing the sum of times in state of

those leaving by the number leaving.

Miscellaneous statistics relating to averages and maxima within
station link type are then calculated. Other miscellaneous statistics
relating to trip link activity are set here for use in the performance
summary file.

6.2.71.5

PDL - See Appendix A.

6.2.71.6

Decision Tables and Algorithms - None.

6-150

6.2.72 SZSTAT

6.2.72.1 Identification

o SZSTAT - Collect Statistics

o IBM/FSD - July 1, 1977

o PARAFOR

6.2.72.2 Argument Dictionary

i

|
VAN I able

|
DIM

I
TYPE

|
DESCRIPTION

l_
I

J

K

1 - STATION (ENTIRE MODELLED AREA AS A
WHOLE APPLICA3LE TO VEHICLES AND TRIPS)

2 - STATION LINK (APPLICABLE TO VEHICLES
ONLY)

3 - TRIP LINK (APPLICABLE TO TRIPS ONLY)

14-4 TYPE OF ELEMENTS:
1 - VEHICLE
2 - TRIP

I *4 element number :

FOR VEHICLES: 1 - KNV
FOR TRIPS: 1 - KNT

1*4 ENTITY TYPE:

L 1*4 direction:
1 = ENTERING STATE
2 - LE AV ING ST AT t

M 1*4 state:

for stations:
1 = IN STATION
2 = IN BOARD EVENT
3 - IN DEBOARD EVENT
4 = IN LAUNCH EVENT

FOR STATION LINKS:
1 - ON STATION L INK
2 = ON FEL
3 - QUEUED

FOR TRIP LINKS:
1 - ON TRIP LINK
2 - ON PEL
3 = QUEUED

N -1*2 LINK NUMBER:
FOR STATIONS: 0

FOR STATION LINKS: 1 - KM SL
FOR TRIP LINKS: 1 - KMT L

6-151

6.2.72.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

JJJ - 1*4 Saved entering value of J

MM - 1*4 Saved entering value of M

VID - 1*4 ID of vehicle being processed
QHEAD 1*4 Pointer to head vehicle of

trai n

IND “ 1*4 Indicates just entrained leaving
FEL

DELTA - 1*4 Difference between time clock was
saved and now

6.2.72.4 Description - Collect statistics other than miscellaneous
statistics. Based on the input arguments branches are taken to code to

update the appropriate statistics. A study of the statistics in the

commons (other than the miscellaneous) will show the structure of these
variables. When entering a state, the number entering, number in, time

integral, and maximum number are updated. When leaving a state, the

number leaving, number in, time integral, sum of times in, and maximum
time in are updated.

Table 6-1 is an outline of the data contents of the Raw Statistics
File. This data is written in binary.

The following is an expansion on the statistical states shown in

Table 6-2. The term state refers to the concept that a vehicle or trip
is in a state or states for a period of time. When the state is entered

1. The number in the state is increased by 1

2. The number entering the state is increased by 1

3. The maximum number in the state is updated (if necessary)

4. The value of the clock is stored away for use when leaving the
state to determine time in state

5. The time integral of number of entities (trips or vehicles) in

state is adjusted.

When a trip/vehicle leaves a state

1. The number in the state is decreased by 1

2. The number leaving the state is increased by 1

6-152

Table 6-2. SZSTAT Statistics Descriptions (Page 1 of 7)

SCz.: STATISTICS - MODEL processor & output processor

SUMMARY: THE FOLLOWING TABLEb SUMMARIZE THE DEFINITIONS uF MOST OF
THE STATISTICS

ST at IS lie names:

LETT! RS S 1GN IF I CANCt

1 •Z* ALL STATISTIC VARIABLES BEGIN WITH »Z*

2-3 THE STATISTIC RELATES TO:
NV - VEHICLES IN STATION STATES
NT - TRIPS IN STATION STATES
NP - PASSENGERS IN STATION STATES
SV - VEHICLES IN STATION LINK(SL) STATES
TT - TRIPS IN TRIP LINK STATES
TP - PASSENGE.RS IN TRIP LINK STATES

4-6 STATISTIC TYPE:
NE - NUMBER ENTERING STATE DURING LAST SAMPLING

I NT ER VAL (HI STGR1CAL

)

NL - NUMBER LEAVING STATE DURING LAST SAMPLING
INTERVAL! HISTORICAL

)

N I - NUMBER IN STATE AT END OF LAST SAMPLING
INTERVAL! ST ATUS)

-

MM I - MAXIMUM NUMBER IN DURING LAST SAMPLING
I NTL R VAL ! H 1 ST OR 1 C AL >

TIN - T I Me INTEGRAL Or NUMBER IN STATE DURING LAST
SAMPLING INTERVAL (H ISTORI CAL)

STL - SUM OF THE TIMES IN STATE OF THOSE LEAVING
STATE DURING LAST SAMPLING INTERVAL (H 1ST.)

MTL - MAXIMUM TIME IN STATE OF THOSE LEAVING STATE
DURING LAST SAMPLING IN IERVAL (HISTORICAL)

AN 1 - AVERAGE NUMBER IN STATE DURING LAST SAMPLING
INT£RVAL(HI ST OR 1C AL) (DERIVED AT SAMPLE
OUTPUT TIME BY DIVIDING •TIN* BY LENGTH
UF THE SAMPLING I NT E R VAL (ASAM P I)

)

ATL - AVERAGE TIME IN STATE OF THOSE ELEMENTS
LEAVING STATE DURING LAST SAMPLING
INTERVAL(HISTURICAL) (DERIVED AT SAMPLE
OUTPUT TIME BY DIVIDING * STL* BY •NL*)

SUBSCRIPTS SIGNIFICANCE
i state:

STATION STATES:
1 - IN ST AT ION
2 - IN BOARD EVENT
3 - IN DEbOARD EVENT
4 - IN LAUNCH EVENT

6-153

Table 6-2. SZSTAT Statistics Descriptions (Page 2 of 7)

STATION LINK STATES:
1'- ON STATION LINK
2 - ON f-EL

3 - QUEUE O,

TRIP LINK STATES:
1 - ON TRIP LINK
2 - ON FEL
3 - QUEUED

LINK number:
STATION STATISTICS - OMITTED
STATION LINKS - STATION LINK NUMBER
TRIP LINKS - TRIP LINK NUMBER

6-154

Table 6-2^ SZSTAT Statistics Descriptions (Page 3 of 7)

VAR NAME DIM DESCRIPTION

KN'NST
KMSST
K.vTST

NUMStR UP STATION STATES (DEFINED IN
NUMBER OF STATION LINK ST ATES (

«

NUMBER OP TRIP LINK STATES (
**

AX SIZE)

)

)

ST A T i ST ICS UN
Z N VNE K MNST

/I 2

ZNVNL KMNST
/I 2

ZNVN 1 K MNST
/ 1 2

ZNVRN

I

KMNST
/l 2

ZNVT I N KMNST
/I 4-

z;wst L K MNST
/I 4

ZNVMTL KMNST
/I *+

ZNV AN 1 KMNST
/R 4

ZNVATL KMNST
/R 4

S TATI ST ICS UN '

Z NT ,\E KMNST
/I 2

ZNTNL KMNST
/I 2

ZfvTN i KMNST
/ 1

2

ZNTMN

I

KMNST
/ 1 2

Z.NTT I N KMNST
/I 4

ZNT ST L KMNST
/I 4

ZNTMTL KMNST
/ 1 4

ZNT AN I KMNST
XR4

ZNTmTL K MNST
/R4

VEHICLES IN STATION STATES
NUMBER OP VEHICLES ENTERI

DURING THE LAST SAMPLiN
NUMBER OF VEHICLES LEAVIN

DURING THE LAST SAMPLIN
NUMBER OF VEHICLES IN STA

AT THE END OF THE LAST
MAXIMUM NUMBER OF VEHICLE
DURING THE LAST SAMPLIN

INTEGRAL OF VEHICLE-TIME
DURING THE LAST SAMPLIN

SUM OF TIMES
DURING THE

MAXIMUM TIME
DURING THE

IN STATE I O
LAST SAMPLIN
IN STATE I O
LAST SAMPLIN

AVERAGE NUMBER OF VEHICLE
DURING THE LAST SAMPLIN

AVERAGE time IN STATE 1 O

DURING THE LAST SAMPLIN

TRIPS IN STATION STATES
NUMBER OF TRIPS ENTERING

DURING THE LAST SAMPLIN
NUMBER OF TRIPS LEAVING S

DURING THE LAST SAMPLIN
NUMBER OF TRIPS IN STATE

AT THE END OF THE LAST
MAXIMUM NUMBER OF TkIPS I

DURING THE LAST SAMPLIN
INTEGRAL OF TRIP-TIME IN
DURING THE LAST SAMPLIN

NG STATE I OF THE STATION
G INTERVAL
G STATE I UF THE STATION
G INTERVAL
TE 1 UF THE STATION
SAMPLING INTERVAL
S IN STATE I OF STATION
G INTERVAL
IN STATE I

G INTERVAL
F VEHICLES
G INTEkVAL
F VEHICLES
G INTERVAL
S IN STATE
G INTERVAL
F VEHICLES
G INTERVAL

IN STATION

LE AVI NG

LEA VI NG

LEAVING

THE STATION

THE STATION

SUM OF TIMES
DURING THE

MAXIMUM TIME
DURING THE

IN STATE 1 O
LAST SAMPLIN
IN STATE 1 O
LAST SAMPLIN

AVERAGE NUMBER OF TRIPS I

DUKINu THE LAST SAMPLIN
AVERAGE TIME IN STATE 1 O

DURING THE LAST SAMPLIN

STATE I OF
G INTERVAL
TATE I OF
G INTERVAL
I OF THE STATION
SAMPLING INTERVAL
N STATE I OF STATION
G INTERVAL
STATE 1 IN STATION
G INIEhVAL
F TRIPS LEAVING
G INTERVAL
F TRIPS LE AV ING
G INTERVAL
N STATE I

G INTERVAL
F TRIPS LE A V ING
G INTERVAL

STATISTICS ON PASSENGERS IN STATION STATES
ZNPNE KMNST NUMBER OF PASS. ENTERING STATE I OF THE STATION

/I 2 DURlNu THE LAST SAMPLING INTERVAL

6-155

Table 6-2

ZNPNL K MN ST
/I 2

ZNPN1 KmNST
/I 2

ZNPMN

I

KMNST
/I 2

ZNPTI

N

KMNST
/I 4

ZNPSTL KMNST
/I 4

ZNPMTL KMNST
/I 4

ZNPAN

I

KMNST
/R4

ZNRhTL KmNST
/R4

SZSTAT Statistics Descriptions (Page 4 of 7)

NUMBER OF PAS
DURING THE

NUMBER OF PAS
AT 1 HE END

MAXIMUM N'UMdE
DURING THE

INTEGRAL OF P

DURING THE
SUM OF TIMES

DURING THE
MAXIMUM TIME
DURING THE

AVEkAlE NUMbE
DURING THE

AVERAGE TIME
during the

S. LEAVING STATE I OF THE STATION
LAST SAMPLING INTERVAL
S. IN STATE I OF THE STATION
OF THE LAST SAMPLING INTERVAL
R OF PASS. IN STATE I OF STATION
LAST SAMPLING INTERVAL
ASS. -TIME IN STATE I IN STATION
LAST SAMPLING INTERVAL

PASS. LEAVING
INTERVAL
PASS. LEAVING
INTERVAL
STATE I

I NTERVAL
PASS. LEAVING
INTERVAL

IN STATE I OF
LAST SAMPLING
IN STATE I OF
LAST SAMPLING
R OF PASS. IN
LAST SAMPLING
IN STATE I OF
LAST SAMPLING

S T A I

ZS VNE

ZBVNL

ZSVNI

ZSVMN I

Zb V T I

N

Z S V T L

ZSVMTL

ZS I/AN 1

Z S V AT b

1ST 1G S ON VE
K MS ST
KM SL / I

K MSST
KMSL/

1

K MS ST
KMSL/

1

K M S ST
KM SL/

1

K MS o T

KMSL / 1

K MSST
KMSl/ i

KMSST
KMSL /I

K MS ST
KMSL/R

K MS ST
KMSL/R

HICLES IN STATION LINK (SL
NUMBER OF VEHICLES ENTERl

2 DURING THE LAST SAM PL IN

NUMBER OF VEHICLES LEAVlN
2 DURING THE LAST SAMPLIN
NUMBER OF VEHICLES IN STA

2 A I THE END OF THE LAST
MAXIMUM NUMBER OF VEHICLE

2 DURING THE LAST SAMPLIN
INTEGRAL OF VEHICLE-TIME

4 DURING THE LAST SAMPLIN
SUM Ur TIMES OF VEHICLES

4 DURING THE EAST SAMPLIN
MAXIMUM TiMt OF VEHICLES

4 DURING THE LAST SAMPLIN
AVERAGE NUMBER OF VEHICLE

4 DURING I HE LAST SAMPLIN
AVERAGE TIME OF VEHICLES

4 DURING 1 He. LAST SAMPLIN

) STATES
NG STATE I OF _SL J

G INTERVAL
G STATE I Or SL J

G INTERVAL
TE I OF SL J

SAMPLING INTERVAL
S IN STATE I ON SL J

G INTERVAL
IN STATE I ON SL J

G INTERVAL
LEAVING STATE I ON S L J
G INTERVAL
LEAVING STATE 1 ON SL J
G INTERVAL
S IN STATE I ON SL J

G INTERVAL
LEAVING STATE 1 ON SL J

G INTERVAL

STATISIICS ON TRIPS IN TRIP LI
ZTTNt

Z i TNL

Z TTN1

zitmni

Z T T T I N

ZTTSTL

KMT ST
KMTL/I

K MT ST
KMTL/I

K MT ST
KMTL/ 1

KMT ST
KMTL/I

KMT ST
KMTL/I

KMT ST
KMTL/

1

NUMBER UF TR1
2 DURING THE
NUMBER OF TR

I

2 DuR 1 N b THE
NUMBER OF TR I

2 AT THE END
MAXIMUM NUMBE

2 DURING THE
INTEGRAL UF T

4 DURING THE
SUM OF TIMES

4 DURING THE

NK (TL) STATES
PS ENTERING STATE I OF TL J
LAST SAMPLING INTERVAL
PS LEAVING STATE 1 OF TL J
LAST SAMPLING INTERVAL
PS IN STATE I UF TL J

OF THE LAST SAMPLING INTERVAL
R OF TRIPS IN STATE 1 ON TL J

LAST SAMPLING INTERVAL
RIP-TIME IN STATE I UN TL J
LAST SAMPLING INTERVAL
OF TRIPS LEAVING STATE I ON TL J

LAST SAMPLING INTERVAL

6-156

Table 6-2, SZSTAT Statistics Descriptions (Page 5 of 7)

z r T M TL

ZTTAMI

Z7TATL

KMTST MAXIMUM TIME OP TRIPS LEAVING STATE I

KMTL/14 DURING THE LAST SAMPLING INTERVAL
KMTST AVERAGE NUMBER OF TRIPS IN STATE I ON
KMTL/R4 DURING THE LAST SAMPLING INTERVAL

KMTST AVERAGE TIME OF TRIPS LEAVING STATE I

KMTL/RA DURING THE LAST SAMPLING INTERVAL

ON TL J

TL J

ON -TL J

LT AT
ZTPNE

Z TPNL

ZTPN I

Z TPMN 1

Z T P T I N

Z TP STL

ZTPMTL

Z TP AN i

Z TP AT L

1 ST ICS ON PASS. IN TRIP LINK (TL) STATES
KMTST NUMBER OF PASS. ENTERING STATE I OF T L J
KM TL / 1 2 DURING THE LAST SAMPLING INTERVAL

KMTST NUMBER OF PASS. LEAVING STATE I OF TL J
KM TL/ 1 2 DURING THE LAST SAMPLING INTERVAL

KMTST NUMBER OF PASS. IN STATE 1 OF TL J

KM TL/ 1 2 AT THE END OF T he LAST SAMPLING INTERVAL
KMTST MAXIMUM NUMBER OF PASS. IN STATE I ON TL J

KMTL/I2 DUPING THE LAST SAMPLING INTERVAL
KMTST INTEGRAL Oh PASS. -TIME IN STATE I ON TL J
KMTL7I4 DURING THE LA ST' S AM PL ING INTERVAL

OF PASS. LEAVING STATE
LAST SAMPLING INTERVAL
OF PASS. LEAVING STATE
LAST SAMPLING INTERVAL

KMTST AVERAGE NUMBER OF PASS. IN STATE 1 ON
KM TL/ R 4 DURING THE LAST SAMPLING INTERVAL

KMTST AVERAGE TIME OF PASS. LEAVING STATE I

KMTL/R4 DURING THE LAST SAMPLING INTERVAL

KMTST SUM OF TIMES
KMTL/I4 DURING THE

KMTST MAXIMUM TIME
KM TL/ I 4 DURING THE

I' ON TL J

I ON TL J

TL J

ON TL J

THE FOLLOWING STATISTICS DO NOT FIT INTO THE ABOVE SCHEME
AND ARE REFERRED Tu AS MISCELLANEOUS

ZM

SUBSCRIPT
1

2

3

5
6

7
8
9

1 0

1 1

12
1 3
1 4

1 S
16

230/R4

VEHI CLE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

MISCELLANEOUS STATISTICS; THE FIRST
218 OF THESE ARE USED TO GENERATE THE
PERFORMANCE SUMMARY FILE BY THE OP

OF
OF
OF
OF
OF
OF
OF
OF
OF

CAPACITY < =VCAP

)

VEHICLE LOAD ENTERING STN FROM GUI DEWAY
LOAD ENTERING STN FROM MODAL INPUT BEFORE
LOAD ENTERING STN FROM MODAL INPUT AFTER
LOAD LEAVING STN FROM GUIDEWAY
LOAD LEAVING STN FROM MODAL INPUT BEFORE
LOAD LEAVING STN FROM MODAL INPUT AFTER

ENTERING STN FROM GUIDEWAY
ENTERING STN FROM MODAL INPUT BEFORE
ENTERING STN FROM MODAL INPUT AFTER
LEAVING STN FROM GUIDEWAY
LEAVING STN FROM MODAL INPUT BEFORfc
LEAVING STN FROM MODAL INPUT AFTER
REJECTED AT INPUT RAMP

VEHICLE
VEHICLE
VEHICLE
VEHICLE
VEHICLE
VEHICLE
VEHICLE
VEHI CLE
VEHICLE
VEHICLE
VEHICLE
VEHICLES
VEHICLES ACCEPTED AT INPUT RAMP
EMPTIES GOTTEN FROM LOCAL STORAGE

6-157

Table 6-2. sz

l t NUMBER GF
1 s NUMBER OF
1 9 NUMBER OF
20 NUMBER Or
2 1 NUMBER OF
22 NUMBER OF
23 NUMBER OF
2 A NUMBER OF
2 S NUMBER OF
2 6 NUMBER Or

SZSTAT Statistics Descriptions (Page 6 of 7)

FROM UPSTREAM SLS
FROM ELSEWHERE IN
AT BOARD QUEUE

EMPTIES GOTTEN
EMPTIES GOTTEN
[RIPS ARRIVING
TRIPS BOARDING
TRIPS DEEOARDING TO LEAVE
TRIPS DE30ARD1NG TO TRANSFER
PASSENGERS ARRIVING AT BOARD
PASSENGERS 30AKD1NG
PASSENGERS DL8GARDING
PASSENGERS DEBGARDING

net

QUEUE

TO LEAVE
TO TRANSFER

SlTYPE
1

2

3

MEAN 1NG
1R

IQ
D (THE

CAN
deboard/soard
APPEAR ONLY O

/JOINT EVENT:
N THIS TYPE)

4 OQ
S OR
6 S
7 IS
S SI
9 DS

1 0 SO
1 1 UL
12 BL
1 3 DL
1 4 MI B
1 5 Ml A
1 o MOB
1 7 MO A
1 3 UNUSED

2 f — 4 4- for EACH • SLTYPE • AVERAGE ft OF VEHICLES IN SL
4 E — 62 FOR EACH • SL I YPE MAX I MUM ft OF VEHICLES IN SL
6 3— 3 0 FOR EACH • SLTYPE • AVERAGE T I ME SPENT IN SL OF
8 1 - 98 FO R EACH •SLTYPE

•

MAX I MUM T I ME SPENT IN SL OF
99-1 1

6

FOh EACH • SLTYPE • AVER AGE ft OF VEH IN SL QUEUE
117-134 FOR EACH • SLTYPE

•

MAXIMUM ft OF VEH IN SL QUEUE
130-152 FOR EACH •SLTYPE * AVERAGE TIME SPENT IN SL QUE
1 55-1 70 FOR EACH •SL1 YPE • MAXIMUM TIME SPE NT IN SL QUE
171-173 FOR EACH TL AV ER AGE ft OF TRIPS IN TL
174—176 FOR EACH TL MAXIMUM ft OF TRIPS IN TL
177-179 rOR EACH TL AV tR AGE TIME SPENT IN TL
180-1 B 2 FOR EACH TL MAXI MUM f I ME SPENT IN TL
lEo-185 FOR EACH TL AVERAGE # OF TRIPS IN TL QUEUE
1 8 8— 1 8 8 FOR EACH TL MAXIMUM ft OF TRIPS IN TL QUEUE
189-19

1

FOR EACH TL AVERAGE TIME SPENT IN TL QUEUE
192-194 FOR EACH TL MAXIMUM TIME SPENT IN TL QUEUE
196-197 FOR EACH TL AVERaGE ft OF PASSENGERS IN TL
198-200 FOR EACH TL MAXI MUM ft OF PASSENGER S IN tl
201-203 FOR EACH tl AVERAGE TIME SPENT IN TL
204-206 FOR EACH TL MAXIMUM TIME SPENT 2

-i

r

OF THAT TYPE
OF THAT TYPE
THAT TYPE
THAT TYPE
OF THAT TYPE
OF THAT TYPE
UE OF THAT TYPE
UE OF THAT TYPE

6-158

ru

i'j

Table 6-2. SZSTAT Statistics Descriptions (Page 7 of 7)

07-209
1 0-21

2

213-21

b

2 1 b-2 1 fc

2 1 9

FOR EACH TL AVERAGE ft OF
EGA tACH TL MAXIMUM ft OF
FOR EACH TL AVERAGE TIME
FOR EACH TL MAXIMUM TIME
NU.M3ER Ur TRIPS REJECTED

PASSENGERS IN TL uUcUt:
PASSENGERS IN Tl QUEUE
SPENT IN TL QUEUE
SPENT IN TL QUEUE
AT Tl CKET 1NG LINK

6-159

3 . The sum of times spent in state for those leaving the state is

increased by the difference between the current value of the
clock and the saved value of the clock at state entry.

4. The maxinfum time spent in state of those leaving is updated
(if necessary)

5. The time integral of number of entitites (trips or vehicles)
in state is adjusted.

These calculations at entry and exit to a state allow seven statistics
to be compiled on the state each sampling interval. In addition, two
averages can be calculated from these seven basic statistics at the end
of each sampling interval after the seven have been collected. These
nine statistics are:

o Number entering state during last sampling interval (historical)

o Number leaving state during last sampling interval (historical)

o Number in state at end of last sampling interval (status)

o Maximum number in during last sampling interval (historical)

o Time integral of number in state during last sampling interval
(historical

)

o Sum' of the times in state of those leaving state during last
sampling interval (historical)

o Maximum time in state of those leaving state during last
sampling interval (historical)

o Average number in state during last sampling interval (histor-
ical) derived at sample output time by dividing ‘TIN

1

by
length of the sampling interval (ASAMPI))

o Average time in state of those elements leaving state during
last sampling interval (historical) derived at sample output
time by dividing ‘STL by 1

N

L

1

)

.

There are three sets of states: those with respect to the station
as a whole, those with respect to station links, and those with respect
to trip links. The states with respect to the station as a whole include
the following:

1. In station -- this is with respect to vehicles and trips (and
passengers) and refers to the number that are in the entire

6-160

modeled area. For trips it includes those entering and leaving
on foot and by vehicles. For vehicles it includes those
entering and leaving via all sources and links.

2. In BOARD/JOINT event — This is with respect to vehicles only

(since trips do not have a "BOARD/JOINT event" -- vehicles
do). It includes all vehicles that enter and leave the BOARD/
JOINT event on any station link in the station that has the

BOARD/JOINT event.

3. In DEBOARD event — This is analogous to item b, but for the

DEBOARD event.

4. In LAUNCH event — This is analogous to item b but for the

LAUNCH event.

The states with respect to station links are for vehicles only and

include the following:

1. On station links -- These statistics-are updated when a

vehicle enters and leaves the station link.

2. In Processing (On FEL) -- These statistics are updated every
time a vehicle enters or leaves an event on a FEL. Thus if

there are several events on a link, a single vehicle will

cause this to be updated several times.

3. Queued — These statistics are updated every time a vehicle
enters or leaves a queued state. In the majority of station
links all queuing occurs at the end of the link (i.e., after
all events are done) since the model directs vehicles to go

from one event to the next until all events are done and then
queue if it cannot leave the link. In this case, a vehicle
can enter the queued state only once on a link. However, in

the case of a link that contains the LAUNCH event, the rule
that requires that event not to start until the vehicle is at
the end of the link, causes a situation where a given vehicle
may queue once before the LAUNCH event (waiting to get to the
head of the link), go through the launch, and then queue again
(waiting to get off the link due to congestion or failure).
Thus on links with the LAUNCH event a vehicle in a heavily
congested/failure situation may enter the queued state twice.

The states with respect to trip links are for trips (and passengers
only) and include the following:

1. On trip link -- These statistics are updated when a trip
enters or leaves a trip link. A trip is considered to leave

the boarding link after the BOARD event has transpired.

6-161

2. In Processing (On FEL) -- These statistics are updated every
time a trip enters or leaves an event on the FEL. Thus on the
ticketing and turnstile links where there are two events
(viz., walk and process), a single trip will cause this to be
updated twice.

3. Queued -- These statistics are updated every time a trip
enters or leaves a queued state. In the case of the ticketing
and turnstile links that contain the processing event, the
rule that requires that event not to start until the trip is

at the end of the link (i.e., all other trips ahead of it have

gone through the ticketing/turnstile mechanism) causes a

situation where a given trip may queue and before the processing
event (waiting to get to the head of the link), go through the

processing event, and then queue again (waiting to get off the

link due to congestion). Thus, on these two links in a heavily
congested situation a trip may enter the queued state twice.

In the case of the boarding link, a trip is considered to

leave the queued state after the board event has transpired.

With respect to the miscellaneous statistics the first 26 are clear
cut. The following eight groups of eighteen (numbers 27-170) relate to

averages and maximum over all links of each station link type. For
example, number 28 contains the average number of vehicles in station
links of type 2 -- input queues; that is, the average of all input
queues is averaged to come up with one input-queue-wide number. The
miscellaneous statistics numbered 171 through 194 are just repetitions
of ZTTANI(i

, j) ,
ZTTMN I (i , j) ,

ZTTATL(i,j), and ZTTMTL(i
, j) where i goes

from 1 through 3 (over the three trip links) and_j = 1 (on trip link)
and 3 (queued) on trip link. Statistics 195 through 218 are analogous
but for passengers and use 'ZIP' statistics instead of

1

Z IT ' . Statistics
171 through 218 are repeats of other statistics to make it easier for
the output processor to locate statistics to do a performance summary by
groupoing them all in one place.

All of this data in Table 6-1 is written to the raw statistics file
each sampling interval.

6.2.72.5 PPL - See Appendix

6.2.72.6 Decision Tables and Algorithms - None.

6-162

6.2.73 SZZERO

6.2.73.1 Identi f i cati on

0 SZZERO - Reset Statistics

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.2.73.2 Argument Dictionary - None.

6.2.73.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

KNTL 1*4 Number of trip links

6.2.73.4 Description - The purpose of this routine is to reset statistical
variables. All the statistical variables, except the status type
variables (i.e., number in state) are reset. All of these are reset to

zero, except the maximum number which is set to the current number in and
the time integral in (the latter of which is set to the negative of the
product of tire number currently in times the current clock value).

6.2.73.5 PPL - See Appendix A.

6.2.73.6 Decision Tables and Algorithms - None.

6-163

6.2.74 VRAND

6.2.74.1 Identification

o VRAND - Oniformity Di^trubuted Random Number Generator Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.74.2 Argument Dictionary

| VARIABLE
|
DIM

|
TYPE

{
DESCRIPTION

i

\

SEED

VALUE

1 *4 (INPUT) NAME OF RANDOM NUMBER SEED WHICH MUST
BE AN ODD INTEGER >= 3.
(OUTPUT) UPDATED SEED.

R*4 (INPUT) NAME OF RANDOM VARIABLE TO BE RETURNED.
(CJUPUT) A RANDOM VARIABLE BETWEEN 0 AND 1.

6.2.74.3 Local Variable Dictionary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code

M - C Hold margin pointer

6.2.74.4 Description - The purpose of VRAND is to generate uniformly
distributed random numbers between zero and one. This macro generates
code which when executed performs a function analagous to SMRNG. Its only

use in DSM is in VRANDN.

6.2.74.5 PDL - See Appendix A

6.2.74.6 Decision Tables and Algorithms - None.

6.2.75 VRANDN

6.2.75.1 Identi fi cation

o BRANDN - Normal Random Number Generation Macro

o IBM/FSD - July 1, 1977

o PL/I

6.2.74.2 Argument Dictionary

i . i

| VARIABLE
I
DIM

I
TYPE

|
DESCRIPTION

|

seed 1 *4 (INPUT) NAME OF RANDOM NUMBER SEED WHICH MUST
EE AN ODD INTEGER >= 3.
(OUTPUT) UPDATED SEED.

.VEA N — R*4 NAME OF MEAN V^LUE.
SU — R*4 NAME OF STANDARD DEVIATION.
VALUE R*4 (I NPUT

)

(OUPUT

)

WITH THE

NAME OF RANDOM VARIABLE TO BE RETURNED
A NORMALLY DISTRIBUTED RANDOM VARIABLE
SPECIFIED MEAN AND STANDARD DEVIATION

6.2.75.3 Local Variable Dicti onary

VARIABLE DIM TYPE DESCRIPTION

OUT - C Constructed FORTRAN code
M -

C Hold margin poi nter
LOCI - C Loop index
L0C2 - C Accumulator for random numbers

6.2.75.4

Description - The purpose of VRANDN is to generate normally
distributed random numbers. This macro generates code when executed
generates 12 uniformly distributed random numbers using BRAND, computes
their sum, subtracts 6, multiplies the result by the standard deviation
and adds the mean.

6.2.75.5

PPL - See Appendix A.

6.2.75.6

Decision Tables and Algorithms - None.

6-165

6.3 OUTPUT PROCESSOR

This section contains the subprogram descriptions for the DSM-

Output Processor.

6-166

6.3.1
CKFOLLOW

6. 3. 1.1 Identification

o CKFOLLOW - Check the Follower Record

o IBM/FSD - July 1, 1977

o PL/I

6. 3. 1.2 Argument Dictionary

(VARIABLE
I D i.M

|
TYPE

|
DESCRIPTION

NONE

6. 3.

1.3

Local Variable Dictionary

|
VAR I ABLE i

D1V,
i
TYPE

|
DESCRIPTION

OUT - C CONSTRUCTED FORTRAN STATEMENTS

6. 3.

1.4

Descripti on - CKFOLLOW generates code which when executed simply
tests if the first eight bytes of an alleged follower record contains the
characters 'FOLLOWER' and if not stops the OP.

6. 3.

1.5

PDL - None since it is a macro.

6. 3.

1.6

Decision Tables and Algorithms - None.

6-167

6.3.2 DAYTIM

6. 3. 2.1 Identification

o DAYTIM - Convert Date and Time to YY/MM/DD/HH/MM/SS

See DAYTIM in MP section.

6-168

6.3.3 DBUG

6. 3. 3.1 Identification

o DBUG - Write Intermediate Output

See SBUG in MP section.

6-169

6.3.4 DTIMEL

6. 3. 4.1 Identification

o DTIMEL - Get Date and Time from System

See DTIMEL in MP section.

6-170

6.3.5 SHIST

6. 3. 5.1 Identification

0

0

0

6. 3. 5.

2

SHIST - Output Histogram of Data

IBM/FSD - July 1, 1977

PARAFOR

Argument Dictionary

V AR I /-\B Lt (DIM
1
TYPE j UE SCRIPT ION

LJ — R #4 LOCATION Oh BIN CONTAINING DATA
c — R*4 LOCATION OF WORK BIN
DLT — R*4 CLASS INTERVAL WIDTH
Nb R*4 BIN NUMBER TO 6E PROCESSED

6. 3. 5.

3

Local Variable Dicti onary

VAKI ABLE
|
DIM

1
type

|
DESCRIPTION

TYf->E 17 I *4 4 CHARACTER DESIGNATION OF SL TYPE
K — 1*4 START OF WORK BIN
1A — I *4 HISTOGRAM SLOT NUMBER TO BE INCREMENTED
IC — I *4 COUNT IN A PARTICULAR HISTOGRAM SLOT
1 1 — 1*4 POINTER TO START OF DATA IN DATA BIN
12 — 1 *4 POINTER TO END OF DATA IN DATA BIN
1 o —

I *4 START OF WORK BIN
I 4 —

I *4 LAST POSITION IN WORK BIN
jA 1*4 NUMBER OF MARKERS TO BE ASSOCIATED WITH A

PARTICULAR HISTOGRAM SLOT
M< — 1 *4 THE CHARACTER ‘X" USED TO hR I NT HISTOGRAM
AMP — R * 4 NUMBER OF MARKERS PER COUNT
AMX — R *4 BIN AMPLITUDE PER MARKER
DLX — R* 4 CLASS INTERVAL WIDTH
CUT — R *4 THE CHARACTER ».

SUM — R *4 SUM OF VALUES IN DATA BIN
ANNN — R ir4 NUMBER OF SAMPLES
AVAk — R *4 VARIANCE OF VALUES IN DATA BIN
GRID 1 01 R *4 101 **S
NO IS — I *4 POINTER TO 16 CHARACTER TITLE
XM AX — R *4 LARGEST COUNT IN A HISTOGRAM SLOT
aMEAN — R *4 MEAN OF VALUES IN DATA BIN
SUMSG — R4 SUM OF SOUARES OF VALUES IN DATA BIN
COMMON H1ST0 SEE 2 Hi ST

6-171

6. 3. 5.

4

Description - SHIST cycles through the bin accumulating the
sum, sum squared of each sampled item along with a frequency of

occurrence within a given class of intervals. The mean and variance
of the data is computed and the desired histogram is output.

6. 3. 5.

5

PPL - See Appendix A.

6. 3. 5.

6

Decision Tables and Algorithms - None.

6-172

6.3.6 SLIST

6. 3. 6.1 Identi f i cati on

o SLIST - List Items or Output Summary

o IBM/FSD - July 1, 1977

o PARAFOR

6. 3. 6. 2 Argument Dictionary

i

VARIABLE
|
DIM

B —

I P

MB —

TYPE
| DESCRIPTION

Rv4 POINTER TO 3EG INNING OF DATA IN BIN TO 3E
PROCESSED

1*4 THE INDEX FOR LUTING BIN ELEMCN TS (I P= lL I ST
EVERY ELEMENT)

1*4 BIN NUMBER TO SE PROCESSED

6. 3. 6.

3

(

Local Variable Dictionary

V A K I AELL |
D l.M

|
TYPE

{ OE SCRIPT ION
TYPE 1 7 I *4 4 CHARACTER DESIGNATION OF SL TYPE
AN - R*4 NUMBER OF SAMPLES INCLUDING 0 *S
Ex — R*4 FIRST DATA ITEM IN BIN
I 1

—
I *4 POINTER TO START OF DATA IN BIN

1 Z — I *4 POINTER TO END OF DATA IN BIN
ANO — R*4 NUMBER Or SAMPLES EXCLUDING 0 *S
I 3X — 1 *4 FIRST DATA ITEM IN BIN
AM IN — R *4 MINIMUM INCLUDING 0*S
ND IS —

I *4 POINTER TO 16 CHARACTER TITLE
AMeAN — R *4 MEAN INCLUDING 0*S
index —

I *4 ST AT ION/ TRIP LINK NUMBER
ST DE V — R *4 STANDARD DEVIATION INCLUDING 0*S
A ME ANO - R *4 MEAN EXCLUDING 0»S
S T ly£ V 0 — R *4 STANDARD DEVIATION EXCLUDING C »S

6. 3. 6. 4 Description - SLIST prints out the contents of any specified
bin, listing every Kth element, or performs the computations necessary
for producing a statistical summary of the data. If a statistical
summary has been requested, the following items are computed and displayed
for all sampled values including and excl using zero values:

6-173

1.

2 .

3.

4.

5.

6 .

7.

8 .

6 . 3 . 6.

5

6 . 3 . 6.

6

Number of samples

Sum of values

Mean per sample

Standard Deviation from the mean

Minimum value

Time of minimum (seconds)

Maximum value

Time of maximum (seconds).

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-174

6.3.7 SODATA

6. 3. 7.1 Identification

o AODATA - Initialize Major Comment Areas

o IBM/FSD - July 1, 1977

o PARAFOR

6. 3. 7. 2 Argument Dictionary - None.

6. 3. 7. 3 Local Variable Dictionary

»

vARI ABLE i DIM 1
TYPE

i DESCRIPTION
1

T 1 TLZM 1 44 1*4 USED T 1 lMTIALI 2E • TITLES

•

THROUGH EQUI VALENCE
T I TLV

1

144 I *4 tv

1 I TLM2 1 44 1 *4 lit

T 1 TLM3 1 44 1 *4 It

T I T L M 4 1 44 1*4 kt

1 I 1 Lm 5 144 1*4 tv

T 1 TLE2 1 2 i *4 ttt

7 I 1 L 2 1 7 2 1*4 tv

1 1 JL22 72 1*4 It

T I T L 2 3 72 1 *4 Ik

7 I i L24 72 1*4 tt

T I TL25 72 1 *4 tt

T I 1 L2o 76 I *4 tt

f I TLL3 72 1*4 It

7 1 TL31 4 0 1*4 n

i I ILL

4

72 1*4 it

7 I TL4

1

72 1*4 tot

I 1 TL4 2 76 I *4 tt

37 ABM 1 50 1 *4 USED TO INITIALIZE * MS UT AB • THROUGH EQUI VALENCE
ST ABM 1 60 1*4 it

ST mB 2 1 IS I *4 »*

ST AB3 28 I *4 »t

ST AB4 55 1*4 »t

stypm 1 50 I *4 USED TO INITIALIZE * MSUTYP

•

THROUGH EQUI VALENCE'
STYPM

1

60 1*4 tt

STYP2 1 18 I *4 tt

STYP3 28 1 *4 *t

ST YP4 55 I *4 tv

6-175

6. 3. 7. 4 Description - SODATA serves to simply initialize many of the
tables by means of a block data subprogram.

6. 3. 7. 5 PDL - None (there is no process).

6. 3. 7. 6 Decision Tables and Algorithms - None.

I

6-176

6.3.8 SONTIX

6. 3. 8.1 Identi fi cation

o SONTIX - Establish PARM Field Addressibi 1 ity

o IBM/FSD - July 1, 1977

o PARAFOR

6. 3. 8. 2 Argument Dictionary

I

|
VAKIABlE

i
DIM I

TYPc
| DE SCR I P T

I

ON
ARG1 - 1*4 (OUTPUT) NUMbER OF CHARACTERS IN FIRST

FARM FIELD
ARG2 - 1*4 (OUTPUT) ADDRESS OF FIRST PARM FIELD

6. 3. 8.

3

Local Variable Dictionary - None.

6. 3. 8.

4

Description - Entry SONTIX obtains and saves the address of PARM
field defined in execution JCL and gives control to output processor main
program. Entry SOUPTX gets the number of characters in the PARM field and
passes character count and address of PARM field-to routine SOZNIT.

6. 3. 8. 5 PPL - See Appendix A.

6. 3. 8. 6 Decision Tables and Algorithms - None.

6-177

6.3.9 SOPSUM

6. 3. 9.1 Identification

o SOPSUM - Performance Summary Processing

o IBM/FSD - July 1, 1977

o PARAFOR

6. 3. 9. 2 Argument Dictionary - None.

6. 3. 9. 3 Local Variable Dictionary

|
VAR 1 ABLE
D I V

SUMM
TYPE

| DIM
|

20

TYPE
R*4

I *4

i DESCRIPTION
* HOURS IN REPORT INTERVAL
INTERMEDIATE TOTAL
4 CHARACTER ABBREVIATION OF LINK TYPE

6. 3. 9.

4

Description - SOPSUM computes the required performance summary
measures from the sums and maximum values accumulated during the data
acquisition process. This processing involves the computation of average
rates/hour and system wide averages. For the case of average times,
these are computed from data passed to the output process in each type
2 record. Once all values have been computed, they are formatted along
with required maximum values for outputting to the performance summary
file. Prior to actual writing of the file, the index file is updated to

reflect performance summary computations.

6. 3. 9. 5 PPL - See Appendix A.

6. 3. 9. 6 Decision Tables and Algorithms - None.

6-178

6.3.10 SOUTPT

6.3.10.1 Identification

o SOUTPT - Output Processor Control

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.10.2 Argument Dictionary - None.

I

6.3.10.3 Local Variable Dictionary

VAK I ABLE |
DIM

|
TYPE

|
DESCRIPTION 1

IN — 1*4 NUMERIC CARD TYPE (FLAG.REQU.READ

)

AEND — L*1 END-OF-F1LE REQUEST CARDS
END — L * I INDICATOR THAT CARD TYPE HAS BEN FOUND
temp — L* 1 FIRST CHARACTER OF NAME GF DATA JTEM (I GN GRED)

ML — I *4 MAJOR CATEGORY CODEC 1=SYST /2 =STN/J=TR I P)

XX — R*4 SAMPLE INTERVAL IN SECONDS
S I N — I *4 BIN USED TO HOLD DATA
SUB — I *4 NAME OF DATA I TEM=SUBCATEGOR Y REQUESTED ON C ARD
FGKM — 1*4 OUTPUT FORMAT REQUESTED ON C ARD(LI ST , SUM M

,

HIST ,PERF

)

PLOT ,

IDH1 — 1 *4 HIGH LINK NUMBER REQUESTED ON CARD
ID LG — 1 *4 LOW LINK NUMBER REQUESTED ON CARD
><A I N —

I *4 MAIN CATEGORY REGUlS TED ON CARD
X T !iRNi —

I *4 OUTPUT TU TERMINAL I ND 1 C AT OR (UNU SE D

)

NAME — 1*4 TYPE OF CARD (F LA G * KE QU * R EA D * . • •

)

I FDR tt —
I *4 NUMERIC FORM REQUESTED

6.3.10.4 Description - Output Processor Control provides the basic
mechanism for recognizing user output requests and involving service
components required to satisfy those requests. Control is passed to
Output Processor Control from an auxilary entry point defined for saving
PARM field information (PDL segment S0NTIX) necessary for later index
file updating. Upon entry, Output Processor Control (PDL segment SOUTPT)
performs initialization of the bin storage areas (PDL segment S0ZNIT).
The basic control loop for recognizing user output requests is then
started. The basic loop consists of the following processing which is

performed until the last user request is satisfied:

1. Read user service request and classify it as to whether it

specifies required data to be collected or the acquisition
and display of data.

6-179

2. If the request is for data, determine the number of requests
which must be filed for data acquisition and perform request
filing)PDL segment ZREQU). Each entity specified in a data
request requires a separate bin storage area for data acquisi-
tion. Thus, a range of entities specified on one data request
causes the automatic generation of multiple internal data
requests as does a request for performance summary output.

3. If the request if for data acquisition (READ Command), reading
of the raw statistics file (PDL segment SZREAD) and data
accumulation within the bin areas is performed. Once completed,
the appropriate data manipulation and display is performed for
each service request, previously filed in the request table
(PDL segments ZHIST, ZLIST, SZPLOT).

Once data display has been completed, the control loop is recycled
to begin processing of the next user specified group of service requests.
Finally SOWTIW is called to list the members that were used in the index
file.

6.3.10.5 PDL - See Appendix A.

6.3.10.6 Decision Tables and Algorithms - None.

6-180

6.3.11 SOWTIX

6.3.11.1 Identification

o SOWTIX - Update Index File

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.11.2

Argument Dictionary

i _ -- - - - - - —
jvAKlABLE

I
DIM |

TYPE
|
DESCRIPTION

COUNT - I *2 NUMBER OF CHARACTERS CONTAINED IN THE PA RM
field

STRING 3 L*1 PARM FIELD INFORMATION SUPPLYING THE MEMBER
BEING UPDATED IN THE PERFORMANCE SUMMARY
FILE

6.3.11.3

Local Variable Dictionary

VAR I ABLE |
DIM

}
type

j
DESCRIPTION

MONT H — I *2 MONTH OF YEAR
DAY —

I *2 uAY OF THE MONTH
YEAR — 1*2 YEAR
MIN — 1 *2 MINUTE OF THE DAY
6LK — L*1 BLANK CHARACTER *

6.3.11.4

Description - SOWTIX parses the parm list to get individual
names. Then DAYTIM is called to get the date and time. Next, the load
module name is written with the date and time to the index. When
SOWTIX is called from SOUTPT, it writes the member name of the performance
summary file into that file. When SOWTIW is called by SOUTPT, it lists
the members that were used during the run in the index.

6.3.11.5 PPL - See Appendix A.

6.3.11.6 Decision Tables and Algorithms - None.

6-181

6.3.12 SOZNIT

6.3.12.1 Identi fi cation

o SOZNIT - Initialization of the Output Processor

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.12.2 Argument Dictionary

|
VAR I A6L E

!
DIM

|
TYPE

NA RE A — 1 V4

fBlNb —
I *4

LREGU - 1 *4
:\L i M:T " 1*4

6.3.12.3 Local Variable D

6.3.12.4 Descri pti on - In

DESCRIPTION
TOTAL SIZE IN wORL)S OF 3IN STORAGE AREA
NUMBER OF BINS REQUIRED
MAXIMUM NUMBER OF REQUESTS
NUMBER OF LINES/PAGE FOR OUTPUT FORMATTING

None.

conditions for the output processing of a Raw Statistics File. Initial
bin allocations (PDL segment ZDBIN) is performed to create a default
number of bins in the storage area. This includes cycling through the
bin storage area and establishing each five locations in the area as a

bin with the following characteristics defined:

1.

Total number of words allocated to bin (=5)

2. Bin number

3. Starting index of bin data

4. Ending index of bin data

5. Identification mnemonic = 0.

Any remaining space in the bin storage area is defined as a large
bin which serves as the basis for dynamic bin storage are allocated
during data acguisition and manipulation processing.

Once the bin storage area is initialized, default parameters for
raw statistics processing are established from header data (PDL segment

SZREAD) containing characteristics of the sampling experiment used in

generating the Raw Statistics File as follows:

1. Number of station links

2. Number of trip links

3. Clock units used

4. Sampling interval.

These data are acquired from the file by filing a system service
request and invoking the data acquisition process in a manner analogous

to processing of user service commands.

6.3.12.5 PPL - See Appendix A.

6.3.12.6 Decision Tables and Algorithms - None.

6-183

6.3.13 SREAD02

6.3.13.1 Identification

o SREAD02 - Read System Statistics

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.13.2 Argument Dictionary - None.

6.3.13.3

I

| VAK I ABLE
END
FOLLOW
FSTAT
HSI AT
RSTAT
VAL
CUSA.M
VSUB
STAT
STAT I

STATE
ST AT 3
STAT A

STATS
ST AT 6
ST AT 7
STAT b

ST AT9
STAT 1

0

STAT 1 1

STAT I 2

1RCQ
I SUB
ISUB 1

1 SUB 2

STLNL

Local Variable Dictionary

OF FILE IN WHILE READING FOLLOWER

TYPE &
T YPE &

TYPE D

OF ONE

LENGTH I *4
LENGTH 1*2
LENGTH R*4
STATISTIC

|
DIM |

TYPE
|
DESCRIPTION

- L?1 INDICATES END
- R*8 ‘FOLLOWER*
36 1*4 HOLD STATISTICS OF
4 o 1*2 HOLD STATISTICS UF
24 R *4 HOLD STATISTICS OF
- R * 4 A PARTICULAR VALUE
- R *4 CU PER SAMPLE
- R *4 UNUSED
2 19 R *4 MISCELLANEOUS STATISTICS
6 R *4 R* 4 — IN STN
o R *4 R* 4 - IN BOARD
6 R *4 R* 4 - IN DEBOARD
6 R*4 R*4 - LAUNCH
9 1*4 1*4 - in STN
9 1*4 1*4 - IN BOARD
9 1*4 1*4 - IN DEBOARD
9 1*4 1*4 - LAUNCH
12 1*2 1*2 - IN STN
12 1*2 1*2 - IN BOARD
12 1*2 1*2 - IN DEBOARD
12 1*2 1*2 - LAUNCH

1*4 REQUEST TABLE ENTRY ASSOCIATED WITH ITEM
1*4 SUt5CATEGORY ASSOCIATED WITH ITEM

- 1*4 USED IN COMPUTING POSITION OF NEXT DESIRED
STATISTIC IN RECORD

- 1*4 USED IN COMPUTING POSITION OF NEXT DESIRED
STATISTIC IN RECORD

R*4 USED TO READ DATA FOR COMPUTING AVERAGE TIMES
FOR THE PERFORMANCE SUMMARY

6-184

1

6.3.13.4
Description - SREAD02 reads sampling records containing system

statistics written to the raw statistics file each sample interval by
the model processor into a buffer from which requested statistics can be

retrieved. The requested items are retrieved by cycling through the
request table and obtaining the appropriate sampled item from the buffer
based on the subcategory index contained in the request table entry. If

the request indicates that performance summary data is required, the sum,

maximum and minimum values for the first 219 system statistics are

automatically accumulated for later processing by SOPSUM. As each
required value is retrieved, it is stored in an assigned bin storage
location for later processing and outputting.
6.3.13.5

PPL - See Appendix A.
6.3.13.6

Decision Tables and Algorithms - None.

6-185

6.3.14 SREAD03

6.3.14.1 I dent i fi cation

o SREAD03 - Read Station Link Statistics

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.14.2 Argument Dictionary - None.

6.3.14.3 Local Variable Dictionary
I __
VAhi I hBL£ |

DIM
|
TYPE

|
DESCRIPTION

1

END — L*1 INDICATES END OF FILE IN WHILE READING FOLLOWER
FOLLOW — R*S •FOLLOWER*
FSTA7

1

9C0 1 *4 HOLD STATISTICS OF TYPE C LENGTH 1*4
HSTAT

1

1 200 1*2 HOLD STATISTICS OF TYPE S LENGTH 1*2
RSI A 1 1 6uO R*4 HOLD STATISTICS OF TYPE & LENGTH R*4
VAL — R*4 A PARTICULAR VALUE OF ONE STATISTIC
i^USAM — R *4 CU PER SAMPLE
VSUB — R * 4 UNUSED
1NEG — 1 *4 REGUEST TABLE ENTRY ASSOCIATED WITH ITEM
1 SUB —

I *4 SUbCATEGORY ASSOCIATED WITH ITEM
13U8 1 — 1 *4 USED IN COMPUTING POSITION OF NEXT DESIRED

statistic IN RECORD
j

1 SUB 2 —
I *4 USED IN COMPUTING POSITION OF NEXT DESIRED

STATISTIC IN RECORD
SL —

1 *4 STATION LINK NUMBER
6.3.14.4 Description - SREAD03 reads sampling records containing station
link stats written to the raw statistics file at each sample interval by
the model processor into a buffer from which requested statistics can
be retrieved. The requested items are retrieved by cycling through the
request table and obtaining the appropriate sampled item from the buffer
based on the subcategory index contained in the request table entry. As

each required value retrieved it is stored in an assigned bin storage
location for later processing and outputting.

6.3.14.5 PDL - See Appendix A.

6.3.14.6

Decision Tables and Algorithms - None.

6-186

6.3.15 SREAD04

6.3.15.1 Identification

o SREAD04 - Read Trip Link Statistics

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.15.2 Argument Dictionary - None.

6.3.15.3 Local Variable Dictionary
l

VAU I ABLE |
DIM 1

TYPE
|
DESCRIPTION

1

END - L*1 INDICATES END OF FILE IN WHILE READING FOLLOWER
FOLLOW — R *5 •FOLLOWER *

FST AT 1 9 00 I *4 HOLD STATISTICS GF TYPE £ LENGTH 1*4
hST A 1 1 1200 I *2 HOLD STATISTICS OF TYPE £ LENGTH 1*2
AST A T 1 500 .

R *4 HOLD STATISTICS OF TYPE £ LENGTH R *4
VAL — R*4 A PARTICULAR VALUE OF QNL STATISTIC
LUSAM — R+4 CU PE« SAMPLE
VSU3 — R*4 UNUSED
1 REG — 1*4 REQUEST TABLE ENTRY ASSOCIATED WITH I TEM
IS us —

1 *4 SUBCATEGORY ASSOCIATED WITH ITEM
I SUB 1 1*4 USED IN COMPUTING POSITION OF NEXT DESIRED

STATISTIC IN RECORD
1 SUB 2 1*4 USED IN COMPUTING POSITION Or NEXT DESIRED

STATISTIC IN RECORD
TL — I *4 TRIP LINK NUMBER

6.3.15.4

Descripti on - SREAD04 reads sampling records containing trip
link statistics written to the raw statistics file for each sample
interval by the model processor into a buffer from which requested statis-
tics can be retrieved. The requested items are retrieved by cycling
through the request table and obtaining the appropriate sampled item from
the buffer based on the subcategory index contained in the request table
entry. As each required value is retrieved, it is stored in an assigned
bin storage location for later processing and outputting.

6.3.15.5 PDL - See Appendix A.

6.3.15.6 Decision Tables and Algorithms - None.

6-187

6.3.16 SREQTLU

6.3.16.1 Identi fi cation

o SREQTLU - Record/Request Correlation

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.16.2 Argument Dictionary - None.

6.3.16.3 Local Variable Dictionary

VAR I nBLE
j
DIM

|
TYPE

|
DESCRIPTION

L — I *4 FIRST AVAILABLE SPACE IN BIN
NOW —

I *4 USED TO LOOP THROUGH REQUEST TABLE CHAIN
SUB - I *4 SUBCATEGORY 4 CHARACTER ABBREVIATIONS
iDNJ — I ¥4 SUBCATEGORY FROM REQUEST TABLE
1REG —

1 *4 REQUEST NUMBER (INDEX TO ZREQUE)
i SUB — I *4 SUbC ATEGORY
A 1 N - I *4 MAIN CATEGORY 4 CHARACTER ABBREVIATION

NEXT -
I *4 USED TO LOUP THRU REQUEST TABLE CHAIN

rvRtQ - I 44 REQUEST NUMBER
iFL A^ — I 44 UNUSED
IMA I N — I 44 MAIN CATEGORY NUMBER

6.3.16.4 Descri pt ion - SREQTLU is invoked each time a record of a
particular type is encountered in the Raw Statistics File. The Record/
Request Correlation process involves cycling through each request table
entry. Each time a request requiring the particular record type is
encountered, it is chained to the previous request requiring the record
type and the major and subcategory indices are converted to numerical
values

6.3.16.5 PPL - See Appendix A.

6.3.16.6 Decision Tables and Algorithms - None.

6-188

6.3.17 SSETUP

6.3.17.1 Identification

o SSETUP - Initialize Data Tables

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.17.2 Argument Dictionary - None.

6.3.17.3 Local Variable Dictionary

i — — .
- - - - - - - — - - -

| VARIABLE
i
DIM

I
TYPE

|
DESCRIPTION

INFINY - R*8 LARGEST 1*4 NUMBER POSSIBLE
L - 1*4 FIRST AVAILABLE SPACE IN BIN
6.3.17.4

Description - SSETUP reinitializes the match table which is

used in establishing record reguest correlation to a specified initial
state as described within the SODATA block data routine. The reguested
form of each entry in the reguest table is validated and optionally the
tables used by the output processor are displayed.

6.3.17.5 PDL - See Appendix A.

6.3.17.6 Decision Tables and Algorithms - None.

6-189

6.3.18 SZPLOT

6.3.18.1 Identification

0 SZPLOT - Plot Output Control

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.3.18.2

»

Argument Dictionary

j
VA P I ABLE |

DIM
|
TYPE

| DESCRIPTION
xo — R*4 STARTING X VALUE
DE L T A X — R*4 X INCREMENT
NDtL 1 A - I *4 k POINTS TO BE PLOTTED
NY - 1*4 * BINS TO BE P LO T T ED
N 1

-
I *4 BIN * 1

M2 — I ^<4- BIN uz
No -

I *4 BIN #3
N4 — I *4 BIN k 4

DOT Toy — R*4 LOWER LIMIT ON Y VALUES
1 OP — R *4 UPPER LIMIT ON Y VALUES
SYMbUL 4 R * 4 PLOTTING SYMBOLS

6.3.18.3 Local Variable Dictionary

VAR I ABLE i
DIM

|
TYPE | DE SCRIPT ION

TYPE I 7 I *4 4 CHARACTER DESIGNATION OF SL TYPES
J1 — 1*4 k OF FIRST BIN TO BE PLOTTED

J2 — 1*4 UNuSED
Jj — 1 *4 UNUSED
J4 —

1 *4 UNUSED
TOP — R *4 LARGEST VALUE TO BE PLOTTED
ND I S —

1 *4 POINTER TO 16 CHARACTER T11LE
I NOE X — 1 *4 STATION/TRIP LINK NUMBER
BOTTOM — I *4 SMALLEST VALUE T U BE PLOTTED
NDtL 1 A — 1*4 NUMBER OF VALUES TO BE PLOTTED

6.3.18.4 Description - SZPLOT is invoked to provide a time series plot
of sampled data items. The actual data accumulation, scaling, and formatting
is performed by GRAPH. It formats the required output by manipulating
the contents of a bin and outputting the desired results. Format processing
includes establishing necessary grids and titles, and establishing scaling
factor applied to data for accommodating the image size on the output
medium (page size).

6-190

6.3.18.5

6.3.18.6

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-191

6.3.19 SZREAD

6.3.19.1 Identification

o SZREAD - Data Acquisition of System Constants

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.19.2

Argument Dictionary

i

| VANl ABLE
TAPE
STAR I

STOP

DIM
|

TrPE
|
DESCRIPTION

j

- 1*4 FORTRAN UNIT NUMBER FOR RAw STATISTICS FILES
- 1*4 BEGIN TIME OF ACQUISITION INTERVAL

1*4 STOP TIME OF ACQUISITION INTERVAL6.3.19.3

Local Variable Dictionary

(VARIABLE
|
DIM

I
TYPE

|
DESCRIPTION

ju:sJK _ DUMMY ARGUMENT USED TO CALL HEADER6.3.19.4

Description - This routine reads Raw Statistics File to acquire
data items from samples within a start/stop interval as required to service
previous data requests. The data acquisition process is initiated by
Output Processor Control in response to a Read Command. The data acquisition
process (PDL segment SZREAD) is partitioned into three functions:

1. Obtain initial, critical data from the tape and perform various
other initializations.

2. Skip to the beginning of the request interval.

3. Read groups of records from the tape, ascertain whether a group
has requested data within it, obtain the requested data, and
store it into the appropriate bin.

Since data acquisition serves to obtain system default parameters during
initialization, a check is made to determine if this is the initial read of

the Raw Statistics File. If it is the initial read, the default parameters
are read from the initial file header. The time units specified for the
simulation experiment acquired during this processing are used in subsequent
data acquisition processing as described below. Entry into the data
acquisition process for satisfying data requests begins with data table

6-192

initialization (PDL segment SSETUP) and establishing request/record
correlation (PDL segment SREQTLU), conversion of the request interval to

simulator clock units and repositioning of raw statistics file at its

beginning. The Raw Statistics File is read, processing each header record
(PDL segment SHEADER) and skipping successive records (PDL segment SSKIPFO)
until the file is positioned to the start of the read (acquisition) interval.
Basically, in this process, record groups are read and their followers are

skipped until one is found whose time is not less than the interval start
time. Two important exceptions apply during the record skipping process:

1. The end of the tape is indicated by a special header record
type number, which must be detected.

2. Those record groups containing critical information that must be

read (indicated by a major category indicator of 1) are detected
and their follower records are read as appropriate.

Once the file is positioned to the beginning of the read interval,
subsequent records are read and one of three actions is taken based upon
the initial setting of the major category indicator and summarized below:

1. 0 -- Meaning that records of type 0 are not needed, the follower
records are skipped, and the next header is read.

2. 1 -- Meaning that following records of 1 are needed processing
for acquiring and storing data is performed.

3. -1 — Meaning that the records might be needed, but whether or

not they are has yet to be determined. - At this time, the program
must determine if they are or are not needed by invoking the data
matching function previously described. The result of determining
whether this record type is required results in changing the major
category indicator to 0, indicating the first request requiring
data from the record type.

Actual data acquisition from required record types is performed by
I/O processing based on individual record type for the major data category
indicated in the record group header (PDL segments SREAD02, SREAD03, and
SREAD04). This processing iterates upon each of the follower records in

turn and then upon each of the requests in the request table associated with
the particular record type (as defined by the chain beginning with the major
category indicator).

If the main category is one that requires no entity index number (e.g.,
as for system as opposed to link, which does), then only one follower record
exists and it contains a single set of data items. However, if the main
category can have an associated entity number (e.g., a particular link
number for the link category), then each follower contains several replications

6-193

of data items, one each for several entity indexes. In this case, I/O

processing (besides iterating on the followers and request lines) must
also iterate upon the number of data item replications in a particular
follower record.

For each iteration, the required appropriate read routine for the
specific record type is called to store the data for processing as contained
in a follower record. Each required data item is located within the record,
retrieved, and stored in the appropriate bin area. In general, data position
information is determined from the major category and sub-category indices
contained in each request table entry as the result of performing the data
mapping function. If during the store process (PDL segment SSTORE), a bin
becomes full, it is automatically reallocated to contain more space (PDL
segment SBNCHK). Thus, the file reading process does not require the user
to "second guess" how much of each type of data actually resides in the
Raw Statistics File. Once storage of a data item has been performed, the
bin space pointers contained in the request table entry are updated to reflect
bin usage.

6.3.19.5 PDL - See Appendix A.

6.3.19.6 Decision Tables and Algorithms - None.

6-194

6.3.20 ZABIN

6.3.20.1 Identi f i cation
x

o ZABIN - Bin Reallocation

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.20.2

Argument Dictionary

1
i

|
VARIABLE

I DIM |
TYPE

j DESCRIPTION
|

RB - 1*4 UlN NUMBER TO BE CHECKED
l p - 1*4 REQUIRED BIN SIZE IN WORDS

6.3.20.3
I

|
VAR 1 MOLE
K
L
i 1

12
KL
LM A

iD 1 F

IREAL
iSIZE

Local Variable Dictionary

DIM
|
TYRE

j
description

- I *4 PO I N T E R TO AREA BEYOND BIN
— 1*4 CURRENT LOCATION of bin
— 1*4 PO I NTER TO START OF OLD Bl N
— 1*4 PO INTER TO START OF NEW BIN
— 1 ^4 PO 1 NTER TO BLANK AREA BEYOND EXPANDED BIN
- 1*4 NUMBER Or BIN POSITIONS TO BE MOVED
-

I *4 left over BIN ARE_A
— 1*4 RE GUI RED BIN SIZE PLUS 4 FOR BIN HEADER
— 1*4 CURRENT SIZE OF BIN

6.3.20.4

Description - This component (PDL segment ZABIN) is invoked to

ensure that proper bin space exists to support a completely new set of

data (after bin area initialization or subsequent processing iterations for
a new set of user requests). The following processing is performed:

If the bin has enough space allocated already, then:

a. If the allocation is four positions or more than required,
the extra space is made into a pseudo-bin (available space
in bin storage area).

b. If the allocation is within four positions of required, no

changes are made.

6-195

2. If more space is needed, then the currently allocated bin area
is changed to a pseudo-bin and an attempt is made to relocate
the bin as:

a. If the back of the bin storage area has enough unused
space, the bin is placed there.

b. If the back of the bin storage area does not have enough
space, then:

(1) All bins are moved towards the top of the bin area
by eliminating any pseudo-bins that may be interspersed.

(2) Test 2(a) above is repeated. If it fails this time,
no additional space is available and processing
termi nates.

When any bin is relocated (including those moved up in Step (1) above),
the corresponding entry in the bin location pointer is changed. If the
specified bin is currently in use (data in it that must be preserved) the
following processing is performed:

1. If sufficient space has been allocated, no changes are made.

2. If sufficient space has not been allocated, but a pseudo-bin
immediately follows the bin being allocated, then:

a. " If the total space of the two bins (real plus pseudo) is

within four positions of the requirements, the total space
is allocated to the real bin; the pseudo-bin is eliminated.

b. If the total space exceeds the requirement by at least four
positions, then the excess psace over and above the required
s^ace is made into a pseudo-bin.

3. If the bin cannot remain where it is, then an attempt to find a

new location of sufficient space is made. First, the empty
area at the end of the bin storage area is checked.

a. If the end of the area is large enough, the old bin contents
are copied into it, the previous bin location is set to

a pseudo-bin, and the array bin location pointer is updated.

b. If the end of the bin storage area has sufficient space, all

bins are moved up by eliminating pseudo-bins. Test 3(a) is

then repeated. If it fails, step (4) is tried.

6-196

4. The amount of area covered by the bin itself plus the space
available back of the bin storage is checked. If this is below
the required space, processing terminates. Otherwise:

a. If the bin being allocated and the free area are adjacent,
the bin is simply enlarged by using part of the free area
space in the bin storage area.

b. If the two areas are not adjacent, then all bins between
the current one and the free area are moved downward to

provide the necessary space.

ZABIN checks if sufficient space has been allotted to a bin and if

not provides the changes necessary to provide the required bin space. Either
the original bin is left unchanged or its size is increased to some specified
number of words. In either case, the previous contents of the bin are
left unchanged. If the expansion of a bin requires a change of location
in the bin storage area, all appropriate pointers are updated to reflect
the new mapping of the bin storage area.

6.3.20.5 FT)L - See Appendix A.

6.3.20.6 Decision Tables and Algorithms - None.

6-197

6.3.21 ZBINL

6.3.21.1

o

o

0

6.3.21.2

j
VAR 1 AB La
N8 1 N

6.3.21.3

|
VAR 1 ABLc
LENGT

H

6.3.21.4
bin.

6.3.21.5

6.3.21.6

Identi fi cation

ZBINL - Get Length of Data in Bin

IBM/FSD - July 1, 1977

PARAFOR

Argument Dictionary

{
DIM

I
TYRE

1
DESCRIPTION

- 1*4 BIN NUMBER

Local Variable Dictionary

|
DIM

I
TYPE

(
DESCRIPTION

- 1*4 LENGTH OF BIN

Description - ZBINL returns the length in bytes of a specified

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-198

6.3.22 ZBNCHK

6.3.22.1 Identi f i cati on

o ZBNCHK - Bin Expansion

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.22.2 Argument Dictionary

| VARIABLE
|
DIM

j TYPE
| DESCRIPTION

~ 1=4=4 BIN NUMBER TO EE CHECKED
iP ~ 1 REQUIRED BIN SIZE IN WORDS

6.3.22.3 Local Variable Dictionary

VAKI AcLE
[
DIM

|
TYPE

i
DESCRIPTION

K - I *4 POINTER TO AREA BEYOND BIN
L -

I *4 CURRENT LOCATION OF BIN
1 1 — I *4 POINTER 70 START OF OLD BIN
12 —

I *4 POINTER TO START OF NEW BIN
XL —

I v 4 POINTER TO BLANK AREA BEYOND EXPANDED BIN
LMX — i *4 NUMBER OF BIN POSITIONS TO BE MOVEu
ID I E —

I *4 left over BIN AREA
iREAL —

I *4 REQUIRED BIN SIZE PLUS 4 FOR BIN HEADER
I SIZE — 1 *4 CURRENT SIZE OF BIN
6.3.22.4 Description - This component (PDL segment ZBNCHK) is invoked
to ensure the expansion of existing bins as necessary to support data
acguisition requirements. The following processing is performed:

1. If the bin has enough space allocated already, then:

a. If the allocation is four positions or more than required,
the extra space is made into a pseudo-bin (available space
in bin storage area).

b. If the allocation is within four positions of required, no

changes are made.

2. If more space is needed, then the currently allocated bin area
is changed to a pseudo-bin and an attempt is made to relocate
the bin as:

6-199

a. If the back of the bin storage area has enough unused
space, the bin is placed there.

b. If the back of the bin storage area does not have enough
space, then:

(1) All bins are moved towards the top of the bin area by
eliminating any pseudo-bins that may be interspersed.

(2) Test 2(a) above is repeated. If it fails this time, no

additional space is available and processing terminates.

When any bin is relocated (including those moved up in Step (1) above),
the corresponding entry in the bin location pointer is changed. If the
specified bin is currently in use (data in it that must be preserved) the
following processing is performed:

1. If sufficient space has been allocated, no changes are made.

2. If sufficient space has not been allecated, but a pseudo-bin
immediately follows the bin being allocated, then:

a. If the total space of the two bins (real plus pseudo) is

within four positions of the requirements, the total_space
is allocated to the real bin; the pseudo-bin is eliminated.

b. If the total space exceeds the requirement by at least
four positions, then the excess space over and above the
required space is made into a pseudo-bin.

3. If the bin cannot remain where it is, then an attempt to find a

new location of sufficient space is made. First, the empty area
at the end of the bin storage area is checked.

a. If the end of the area is large enough, the old bin contents
are copied into it, the previous bin location is set to a

pseudo-bin, and the array bin location pointer is updated.

b. If the end of the bin storage area has sufficient space, all

bins are moved up by eliminating pseudo-bins. Test 3(a) is

then repeated. If it fails, step (4) is tried.

4. The amount of area covered by the bin itself plus the space
available back of the bin storage is checked. If this is

below the required space, processing terminates. Otherwise:

a. If the bin being allocated and the free area are adjacent,
the bin is simply enlarged by using part of the free area
space in the bin storage area.

6-200

b. If the two areas are not adjacent, then all bins between
the current one and the free area are moved downward to

provide the necessary space.

6.3.22.5 PPL - See Appendix A.

6.3.22.6 Decision Tables and Algorithms - None.

6-201

6.3.23 ZDBIN

6.3.23.1 Identification

o ZDBIN - Allocate Bin Storage

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.23.2 Argument Dictionary - None.

6.3.23.3 Local Variable Dictionary

VAK I ABLE |
DIM

j
TYPE

|
DEBCNlPT ION

NX - I *4 POINTER TO END OF CURRENT BIN
RNN - I?4 POINTER TO BEGINNING OF REMAINING BIN AREA
LONG - 1*4 b = INITIAL LENGTH OF BIN

6.3.23.4 Description - ZDBIN defines an initial number of bins in the

bin area each having header information initialized to indicate the_bin
is currently empty and available for use. Any space remaining in the

storage area after definition is complete is allocated to one large bin

area.
6.3.23.5

PPL - See Appendix A.

6.3.23.6

Decision Tables and Algorithms - None.

6-202

6.3.24 ZDUMBIN

6.3.24.1 Identification

o
“

ZDUMBIN - Formatted Dump of Bin Area

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.3.24.2 Argument Dictionary - None.

6.3.24.3 Local Variable Dictionary

V A rv 1 ABLE | DIM
|

T YPE
I
DESCRIPTION

J — I 44 POINTER TO START OF DATA IN BIN
1 1 — 1*4 TOTAL WORDS ALLOCATED TO BIN
12 — I 44 LOGICAL BIN NUMBER
IB — I 44 POINTER TO START OF DATA
I 4 • —

1 4 4 POINTER TO END OF DATA
15 — 1 *4 LENGTH Or DA I A IN BIN
JNN — I *4 JN-5
J TOT — I 4 4 NUMBER OF FREE WORDS
MTuT — 1 44 NUMBER OF ITEMS IN BINS
,\TOT — I 44 TOTAL NUMBER OF WORDS ALLOCATED

HEADER

TO BIN

6.3.24.4

Description - ZDUMBIN produces a formatted dump of the bin
storage area as an aid to debugging.

6.3.24.5

PPL - See Appendix A.

6.3.24.6

Decision Tables and Algorithms - None.

6-203

6.3.25 ZERROR

6.3.25.1 Identification

o ZERROR - Write Error Message and Continue/Terminate

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.25.2 Argument Dictionary

i

|
vAk I I 0 1M

j
TYPE | DESCRIPTION

v.SGNU - 1 *4 ERROR MESSAGE NUMBER
MSG L £ 1 MESSAGE TEXT
MSEVEfi —

I *4 MESSAGE SEVERITY

6.3.25.3 Local Variable Dicti onary

VAkI able | DIM |
TYPE

|
DESCRIPTION

PGM 5 I *4 PROCESSOR ABBREVIATION
oCLM — L* 1 SE M I COL I

N

TY^E 3 L*1 ALPHA SEVERITY DESIGNATIONS
V SoTYP — L 'f' I MESSAGE TYPE CHARACTER
XCLUlK. - K +4 TIME OF CURRENT SAMPLE BEING
NU M — 1+4 INDEX TO MSGC & MSGCN

i

I

PKOCE SSL D
6.3.25.4

Description - ZERROR issues a specified error message according

to a fixed format consisting of number, type, descriptive and test. It

accumulates counts of messages by type and number and gracefully terminates

if error limits are exceeded by providing a trace of subroutine calls

leading to termirration (see SERROR in MP section).

6.3.25.5

PDL - See Appendix A.

6.3.25.6

Decision Tables and Algorithms - None.

6-204

6.3.26 ZFLAG

6.3.26.1 Identification

o ZFLAG - Intermediate Output Flag Setting

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.26.2 Argument Dictionary - None.

6.3.26.3 Local Variable Dictionary

| VAR I ABLE 1 DIM |
TYWE

|
DESCRIPTION

t-lM - L*1 INDICATES END OF FLAG FIELDS FOUND
IdMP IS 1*4 HOLD IS FIELDS FROM FLAG FOLLOWER CARD6.3.26.4

Description - ZFLAG initializes all flag setting to zero and

tnen turns a specified set of flags as requested by the user (see SAFLAG

in MP section).

6.3.25.5 PDL - See Appendix A.

6.3.26.6 Decision Tables and Algorithms - None.

6-205

6.3.27 ZGRAPH

6.3.27.1 Identification

0 ZGRAPH - Produce Time Series Plot

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.3.27.2 Argument Dictionary

vAk I A BL

E

|
D 1 M

|
TYPE

|
DESCRIPTION

At) - R £4 STARTING X VALUE
DtfLT hX — R *4 X INCREMENT
\DtLT

A

— I *4 ft i-OlNIS TO 3E PLOTTED
NY — 1*4 * i_1NS TO BE PLOTTED
Y 1

— R *4 BIN H\

Y 2 — R *4 BIN #2

Y O — R *4 J I N XT 3
Y 4 — R ^ 4 SIN A4

oO i T CsM — P *4 LO WE ft LI MU QN Y VAL UE S
TOt- — R*4 UPPER LIMIT ON Y VALUES
SY MBGL 4 R*4 PLOTTING SYMBOLS

6.3.27.3 Local Vari able Dictionary

V A R I A B LC
|
DIM |

T YPE
| DESCRIPTION

i-LUT 1 Ll Rir4 EVERY 1 OTH LINE TO 3E PLOTTED
GR ID i u 1 R -r-4 1ST THRU 9 TH LINES TC BE PLOTTED
UkOMK 1

1

R*4 Y SCALE VALUES FUR TITLING
i IT L E 2 I R ^4 UNUSED
label 2 1 1*4 UNUSED
lagab 2 i 1 *4 UNUSED
Y 1 - R *4 VALUE OF FIRST GRAPH PLOTTED
Y 2 — R*4 UNUSED
Y 3 — R*4 UNUSED
Y 4 — R*4 UNUSED
BLANK — R * 4 6 BLANKS • 1

DASH - R *4 fc> DASHES • *

CROSS - R *4 o DOTS * V

J —
1 *4 POINTER TO VALUE TO BE PLOTTED

X — R *4 SAMPLE NUMBER
S Y .A — R*4 SYMBOL (1)

LAB I — I ¥4

L Ar>2 — 1 *4

LINE — I *4
NGUT — I *4
YMIN — R*4
YMAX — R*4X

L I M I T -
I *4

SAVE 1 - R *4
SAVE 2 — R 44
SAVE 3 — R*4
SA VE A — R £4

NLABEL — 1*4
CRDSCL — R*4
SAMS CL — R¥4

LAbE L (1)

LABLLf 2

)

COUNT CJF LINES PRINTED
SYbOUT UNIT NU M8tR
MINIMUM OF ALL BINS TO
MAXIMUM OF ALL BINS TO
NUMBER OF POINTS TO BE
HOLD PREVIOUS VALUE
UNUSED
UNUSED
UNUSED
UNUSED
ORDINAL SCALE
UNUSED

BE PLOTTED
BE PLOTTED
PLOTTED
UR I D/PLUT

SY ME

OF

USED TO COMPUTE LOCATION OF

6.3.27.4 Description - ZGRAPH sets up grid lines to be displayed, computes
scaling factors, scales data points and produces desired hardcopy output.

6.3.27.5 PPL - See Appendix A.

6.3.27.6 Decision Tables and Algorithms - None.

6-207

6.3.28 ZHEADER

6.3.28.1

o

o

0

6.3.28.2

6.3.28.3

i

|
V AN 1 A 5 l_E

HEAD A E

6.3.28.4
File. If

If an I/O

6.3.28.5

6.3.28.6

Identi fi cation

ZHEADER - Read Next Header Record

IBM/FSD - July 1, 1977

PARAFOR

Argument Dictionary - None.

Local Variable Dictionary

l DIM |
TYPE

i
DESCRIPTION

- R*8 'HtAuER

Description - ZHEADER reads next record from the Raw Statistics
expected header is not found, it issues a warning message,
error is encountered, it issues a warning message.

PPL - See Appendix A.

Decision Tables and Algorithms - None.

6-208

6.3.29 ZHIST

6.3.29.1 Identification

o ZHIST - Histogram Output Control

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.29.2

Argument Dictionary

|
VARIABLE

|
DIM

|
TYPE

|
DE S CP 1 P T I tv

1 Q A - 1*4 GIN NUMBER
/A - R*4 CLASS INTERVAL WIDTH6.3.29.3

Local Variable Dictionary

| VARIABLE
I
DIM

I
TYPE

|
DESCRIPTION

DM V 5 R *4

C I'MNON UU T PUT
Nd 1 N 1 0 1 *4
PAR 7 R*4
1PAR 7 1 *4

COMMON hi STO
M I N —

1 *4
MAX — 1*4

U^ED LIKE BIN IN CALL TO Z.MNMXJ FIRST 2

HUSIT IONS UN USED ; 3 -M IN J4=M AX J5-RANGE

NO IN (I) =0 1 N FOR H1ST0GRAM/N3 IN’ (2)=JN
PA R (1) =CLASS INTERVAL WIDTH
UNUSED

UNUSED
UNUSED

AM AX
AM i N

1*4 LARGEST VALUE IN HISTOGRAM
1*4 SMALLEST VALUc IN HI ST UGH AM

nSLOT - 1*4 NUMBER OF SLOTS IN HISTOGRAM

6.3.29.4

Description - ZHIST is invoked to produce a histogram of

sampled items contained in a bin storage area. The acquisition of data
is performed by SHIST. Prior to displaying the histogram, the minimum

and maximum values of the sampled items are determined (PDL segment
ZMNMX).

It formats the required output by manipulating the contents of

a bin and outputting the desired results. Format processing includes

establishing necessary grids and titles.

6.3.29.5

PDL - See Appendix A.

6.3.29.6

Decision Tables and Algorithms - None.

6-209

6.3.30 ZLIST

6.3.30.1 Identification

o ZLIST - List Output Control

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.30.2 Argument Dictionary

(VARIABLE (DIM
|
TYPE

|
DESCRIPTION

1UA - 1*4 BIN NUMBER
1 >’'a - I *4 k (KlH ELEMENT LISTING INDICATOR)

6.3.30.3 Local Variable Dictionary

|
v AR I ABLE j DIM

|
TYPE

i DESCRIPTION
COM MO N OUTPUT
N5 IN 1 O I *4 N3 IN

(

1 >=NUMBER OF BIN TO BE LISTED
PAR 7 R*4 UNUSED
IPaR 7 I *4 IP AR (1

)

=< (KTH ELEMENT LISTING INDICATOR)

6.3.30.4 Description - ZLIST is invoked to produce either listing of

sampled data items or a statistical summary. The actual acquisition of

the data is performed by SLIST which retrieves each required data values

within a specific bin based on the start and stop indices contained

in the bin header.

It formats the required output by manipulating the contents of a

bin and outputting the desired results. Format processing includes

establishing necessary titles.

6.3.30.5 PDL - See Appendix A.

6.3.30.6

Decision Tables and Algorithms - None.

6-210

6.3.31 ZMNMX

6.3.31.1 Identi f i cati on

o ZMNMX - Compute Minimum and Maximum Values

o IBM/FSD - July 1, 1977.

o PARAFOR

6.3.31.2

Argument Dictionary
i

| VARIABLE
I
DIM

I
TYPE

| DESCRIPTION I

B 21 R*4 SPECIFIED BIN
C 21 R*4 blN FOR STORING MIN, MAX D RANGE
iP - 1*4 VvORD IN BIN C FOR STORING COMPUTED VALUES

I

6.3.31.3

Local Variable Dictionary

v Ah I ABLE
|
DIM | TYPE

|
DESCRIPTION

i C —
I *4 C(1)

i 1 -
I *4 START OF DATA

i 2 — 1*4 END OF DATA
L MAX - R*4 maximum VALUE FOUND
EM 1 N — R*4 MINIMUM VALUE FOUND
RANGE — R*4 BmAX-BM I

N

6.3.31.4

Description - ZMNMX cycles through a specified bin,

the minimum, maximum data values and computes the range given

difference and stores in some specified bin location.

determi nes

by the6.3.31.5

PDL - See Appendix A.

6.3.31.6

Decision Tables and Algorithms - None.

6-211

6.3.32 ZRCLEAN

6.3.32.1 Identification

o ZRCLEAN - Reset Bin Addresses

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.32.2 Argument Dictionary - None.

6.3.32.3 Local Variable Dictionary

| VARIABLE
I
DIM

I
TYPE

|
DESCRIPTION

L - IA4 POINTER TO BIN6.3.32.4

Descripti on - ZRCLEAN cycles through the bin storage area and

resets the end data location within each allocated bin as identified in

the reguest table to its initial value.
6.3.32.5

PPL - See Appendix A.
6.3.32.6

Decision Tables and Algorithms - None.

6-212

6.3.33 ZREQU

i

I

6.3.33.1 Identification

0 ZREQU - Request Handling

0 IBM/FSD - July 1, 1977

0 PARAFOR

6.3.33.2 Argument Dictionary

VAR I ABLE I DIM 1 type: | Dt BCR I PT ION
FORM — 1*4 FORM OF REQUESTED OUTPUT
I'iA i N —

I *4 MAIN CATEGORY MNEMONIC
SUB —

I -r A SUBCATEGORY MNEMONIC
1 DKO A -

I *4 LOW INDEX
1DMGF —

1 *4 HIGH index
MA — I *4 BEGINNING BUM NUMBER

SI /E —
I *4 DUMMY' ARGUMENT = 0

6.3.33.3 Local Variable Dictionary

i/Ak I A3LL I DIM
|

TYPE
j
DESCRIPTION

I A 4 0 I *4 FIRST 40 WORDS OF BIN AREA
F U t- M S 1 G I *4 *T SER 1 ‘STAT* & o 0* S

r MS 1 ZE 1 G I 44 loot lit & 8 0 "S

L —
I *4 POINTER TO BIN TO Be PROCESSED

L_0 — I *4 POINTER TU START OF DATA IN BIN
I N —

I *4 DIN TO BE USED TO STORE DATA
1 UNO — 1*4 ST AT 10N/TR IP LINA NUMBER
I F OR M — 1*4 NUMBER OF FORM SELECTED
I S i ZE —

1 * 4 SIZE OF FORM SELECTED

6.3.33.4 Descript ion - Request processing is invoked by Output Processor
Control for filing a data request in the request table. Requests are
accumulated until a read command is encountered which causes initiation
of the data acquisition process.

Request filing (PDL segment ZREQU) begins with creating an entry in

the request table by initializing the following data associated with the
request:

1. Assignment bin number (next available unused)

2. Initial bin size-assigned based on type of data display required.

Initial bin size allocation is made to accommodate data acquisition
and manipulation requirements. This allocation serves only as

an initial size estimate of the bin area which may be expanded
as required during data acquisition.

6-213

3. Main category of data (input mnemonic).

4. Subcategory of data (input mnemonic).

In addition, the required bin space allocation to accommodate the
acquisition of data is performed (PDL segments ZBNCHK and ZSHIFT) and
three other entries in the request table are initialized:

1. Next available position in the bin

2. Number of entries remaining in the bin

3. Request chain printer (=0).

Requests in the table are only erased after servicing (data
acquisition, amnipulation, and display).

6.3.33.5 PDL - See Appendix A.

6.3.33.6 Decision Tables and Algorithms - None.

6-214

6.3.34 ZSHIFT

6.3.34.1 Identification

o ZSHIFT - Reallocate Bin Storage Assignments

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.34.2

Argument Dictionary

|
V A k I ABLE i

DIM
J -

L_ —
—

TYPE
|
DESCRIPTION

1*4 STARTING POSITION FOR BIN
1*4 CURRENT LOCATION OF BIN
1*4 END POSITION IN BIN TO 3E MO VhD

6. 3. 34. 3 Local Variable Dictionary

I V AF^T A^S lTe i D 3 M j
TYPE

|
DESCRIPTION

u , IFF _ L v4 INDICATES CURRENT POSITION & NEW POSITION

U IFFERENT

1 i
— 1*4 L

12 — 1*4 1

6.3.34.4 Description - ZSHIFT cycles through a given bin relocating

contents in a new area and zero old bin entries.
6.3.34.5

PDL - See Appendix A.

6.3.34.6

Decision Tables and Algorithms - None.

AR t_

6-215

6.3.35 ZSKIPFO

6.3.35

o

o

0

6.3.35

6.3.35

V A K i A i

f-OLLU

6.3.35
File.

If an

6.3.35

6.3.35

. 1 Identi fi cation

ZSKIPFO - Skip a Follower Record

IBM/FSD - July 1, 1977

PARAFOR

.2 Argument Dictionary - None.

. 3 Local Variable Dictionary

BLt |
DIM

|
TYPE

|
DEDCR1PT1UN

Vi - R*8 'FOLLOWER*

.4 Description - ZSKIPFO reads next record from the Raw Statistics
If expected follower is not found, it issues a warning message.

I/O error is encountered, it issues a warning message.

.5 PDL - See Appendix A.

.6 Decision Tables and Algorithms - None.

6-216

6.3.36 ZSTORE

6.3.36.1 Identi f icati on

o ZSTORE - Store Data in Bin

o IBM/FSD - July 1, 1977

o PARAFOR

6.3.36.2 Argument Dictionary

l

V A K 1 AbLE 1

L

DIM
|;

TYPE 1

I *4
1 DtE

K LL

SCR IPTION
uUEST TABLE entry associated with item

2UJ
t- —

I *4 c> TA VALUE TU 3E STOWED

6.3.36.3 Local Variable Dictionary

V A rv I AbLE l DIM |
T YPtE |

DESCRIPTION
/* 1 1 d V, — R *4 data item to be STORED
YIIE'! - R*4 DATA ITEM TO BE STORED
TIME — R £ 4 TIME UE CURRENT RECORD BEING PROCESSED
1 UNI IS 9 1 *4 UNUSED
O 1 N - I ¥4 BIN TO BE USED Tu STORE ITEMS
I REu — I *4 REQUEST TABLE INDEX

6.3.36.4 Description - ZSTORE alters pointers into bin area from request
table in order to reflect the storing of a sampled item. It ensures the
bin receiving the data is large enough. If a statistical summary of this
item is required, compute the sum of items and store the time of the
minimum or maximum as required.

6.3.36.5 PPL - See Appendix A.

6.3.36.6 Decision Tables and Algorithms - None.

100 copies

U.S. GOVERNMENT PRINTING OFFICE . 1982—500-796 326

SE C

6 - 217/ 6-218

DOT LIBRARY

